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Precipitation fade statistics for 19/29-GHz
COMSTAR beacon signals and 12-GHz
radiometric measurements

PRABHA N. KUMAR

(Manuscript received October 14, 1981)

Abstract

Long-term measured propagation data at frequencies greater than 10 GHz,
especially at 19/29 GHz, are not commonly found in the literature. This paperdis-
cusses studies of the effects of ram n on the 19/29-GHz coMSTAR beacon signals and
12-GHz radiometrically measured atmospheric noise temperature. Data covering
four years of continuous measurement are presented, which consist of measure-
ments of beacon signals from three COMSTAR satellites (COMSTAR D-1, D-2, and
D-3), 11.6-GHz radiometrically measured atmospheric noise temperature, and
surface point rain rate. Analysis of these data includes cumulative fade distribu-
tions at 19.04 and 28.56 GHz; diurnal fade distributions and fade duration histo-
grams at 19.04 and 28.56 GHz; cumulative distribution of measured surface point

rain rate; excess rain attenuation derived from radiometrically measured atmo-
spheric noise temperature; and diurnal and fade duration histograms of these

11.6-Gl lz fades. Elevation angle dependence is briefly discussed.

Introduction

Satellite communications systems at 4 and 6 GHz are now common.
As these bands will eventually be saturated, studies of the higher fre-
quency bands have become important [1]-[12]. Unfortunately, at fre-
quencies above 10 GHz attenuation by rain constitutes a serious obstacle
in the design of communications systems [4], [13]. Several years of
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measured data analyses are required in order to establish the attenuation
[14], depolarization and fade duration statistics [15], and year-to-year
variations of these statistics [16].

This paper presents precipitation attenuation statistics derived from
monitoring 28.56- and 19.04-GHz beacons from COMSTAR geostationary
satellites (COMSTAR D-1, D-2, and D-3), and 11.6-GHz excess rain
attenuation derived from radiometric measurements along the same slant
path over a period of approximately four years. For convenience, the
data base is divided into three categories. Table I shows the satellite loca-
tions; elevation angles from the measurement facility at COMSAT
Laboratories, Clarksburg, Maryland; and the time periods ofthe analyzed
data along with other important parameters. The measurement facility at
Clarksburg is briefly described and the cumulative statistics of rain rate
and attenuation for each of the three measurement periods are presented.
Finally, fade duration statistics and their diurnal variations are discussed.

TABLE 1. CHARACTERISTICS OF COMSTAR SATELLITES

COMSTAR D- 1 COMSTAR D-2 COMSTAR D-3

Location

(W. Long .) 128' 95° 87°

Elevation Angle 21° 41° 43.5°

Data Period 7/14/76- 8/17/77- 8/18/78-
8/17/77 8/18/78 9/1/80

Polarization Linear Linear Linear

Tilt Angle (from
local vertical) 4° 21° 17°

Frequencies (GHz) 19 and 29 19 and 29 19 and 29

Experimental setup

Figure 1 is a simplified block diagram of the measurement facility at
Clarksburg, Maryland; a detailed description can be found elsewhere [2],
[3]. The facility consists of a 5-m Cassegrain antenna with RF down-
converter, IF beacon receiver, and chart recorder. A tipping bucket rain
gauge and an 11.6-GHz radiometric receiver operating independently
through a 2-m antenna are provided to measure the rain accumulation
and fades at 11.6-GHz. Figure 2 is a block diagram of the front end of the
RE receiver, and Figure 3 is a block diagram of the receiver baseband
section.
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Description

COMSTAR beacon signal characteristics have been previously described
[2], [17], [18], as have beacon receiver design, operations, and data
collection procedures [2], [18]. It is noted here that the 5-m Cassegrain
antenna receives signals at both 19 and 29 GHz. The vertically polarized
signals at 29 GHz (carrier), 28.29 GHz (lower sideband), and 28.82 GHz
(upper sideband) arrive at the receiving antenna ports with phases co-
herent to the 19-GHz vertically polarized signal. The phase-locked loop
(PLL) technique is used to lock onto the 19-GHz vertically polarized
signal, which is expected to sustain shallower fades than the other signals.
The coherence of 29-GHz signals and of the 19-GHz vertically polarized
signal assures the reception of 29-GHz signals as long as the 19-GHz
vertically polarized signal receiver remains locked.

Results of measurements

Measured rain rate and attenuation will be discussed for the three
measurement periods defined in Table 1.

Rain rate statistics

During the COMSTAR D-1 measurement period , from July 14 , 1976, to
August 17, 1977 , the measured total rain accumulation was 814 mm.
Figure 4a shows the comparison of measured rain rate with Rice-
Holmberg model [19] distributions for a mean annual rainfall (Al) of
745 mm and values of the thunderstorm ratio (3 (ratio of thunderstorm
rain to total rain) equal to 0.2 and 0.3. From Figure 4a, it is clear that the
measured rain rate appears to be in excellent agreement with the Rice-
Holmberg model distribution for P equal to 0.3, which happens to be the
mean value of p for Clarksburg, Maryland , derived from the available
propagation data base.

During the second year, from August 17, 1977, to August 18, 1978, the
measured rain accumulation was 799 mm . Figure 4b shows the variation
of rain rate with percentage of time. The distributions obtained from the
Rice-Holmberg model for M equal to 797 mm, and [3 of 0.2 and 0 . 3 are also
plotted in Figure 4b. For this measurement period, the measured rain rate
is in good agreement with model distributions for [3 equal to 0.2 and 0.3
for percentages of time greater than 0.5. However, for percentages of
time less than 0.5 but greater than 0.01, which constitute the range of
greatest interest, the Rice-Holmberg distribution for R equal to 0.2 is in
better agreement with the measured data.
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Figure 4b. Comparisons of Measured Surface Point Rain Rate with
Theoretical Model Distributions
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Figure 4a. Comparisons of Measured Surface Point Rain Rate with
Theoretical Model Distributions

In Figure 4c, the measured rain rate for the third measurement period,
from August 18, 1978, to September 1, 1980 (see Table 1), is plotted with
the Rice-Holmberg distributions for mean annual rainfall of 748 mm and
P equal to 0.3 and 0.4. During this period, the total accumulation of rain
was 1,526 mm. As is evident from Figure 4c, the measured rain rate is in
good agreement with the model for (3 equal to 0.4 for percentages of time
greater than 0.1. For time percentages less than 0.1 but greater than 0.03,
the measured rain rate agrees better with the model distribution for (3
equal to 0.45 (see Figure 4c). For time percentages less than 0.03 and
greater than 0.01, the measured data have a tendency to agree better with
the model distribution for (3 between 0.3 and 0.4 (see Figure 4c).

In Figure 4d, the measured rain rates for all three above-mentioned
periods are plotted (individually and combined) versus percentage of
time. Notice that the rain rate distribution curve for the combined years is
smoother than the distribution curve for individual periods for high rain

I

10-3
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Figure 4c. Comparisons of Measured Surface Point Rain Rate with
Theoretical Model Distributions
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ported in Reference 3. In this section, the measured attenuation for 19-
and 29-GHz beacon signals and for 12-GHz radiometric measurements
are discussed. Table 2 gives the measured and nominal e.i.r.p. values for
the three COMSTAR beacon signals. Figure 5a represents cumulative
attenuation distributions derived from measured 12-GHz radiometric
noise temperature, for 19-GHz vertically and horizontally polarized
beacon signals, and for the 29-GHz carrier. In Figure 5b, cumulative
distributions of measured attenuation for 12, 19, and 29 GHz are
compared with model distributions based on the Rice-Holmberg model
of rain rate for a mean annual rainfall of 745 mm and R equal to 0.3.

TABLE 2. COMSTAR BEACON e.i.r.p.'s

Im

I I I I I I I I I I I
10 20 30 40 50 60 70 80 90 100 110 120 130 140

RAIN RATE imm/HRi

Figure 4d. Comparisons of Measured Surface Point Rain Rate for the
Entire Measurement Period with Theoretical Distributions

rates. The theoretical distribution based on the Rice-Holmberg model for
a mean annual rainfall of 763 mm (M) and [3 equal to 0.3 is also plotted in
Figure 4d. As is evident from Figure 4d, the measured distribution for the
entire measurement period is in excellent agreement with Rice-
Holmberg model distribution for mean annual rainfall of 763 mm and [7
equal to 0.3 for all percentages of time above 0.01 percent. The curves in
Figure 4d represent year-to-year variability in rainfall [15], [16] over a
period of four years. Although the factor p varied from 0.2 to 0.4, the aver-
age p for the entire measurement period agrees with the mean value of (3
equal to 0.3 for Clarksburg, Maryland. There was no significant difference
in the total accumulation of rain for each year. The difference in total ac-
cumulation varied less than 40 mm for an average year for the entire
measurement period. During these observations the average experiment
up time was 93 percent.

Attenuation statistics

Some results of precipitation attenuation studies based on the mea-
sured data for frequencies greater than 10 GHz have been reported [I]-
[31,[61-[141,[201. COMSTAR D-1 and D-2 beacon data have been examined
from the point of view of frequency scaling, and results have been re-

NOMINAI,

e.i.r.p. MEASURED e.i.r.p. (UBW)`
SIGNAL (nBW) D-I D-2 I)-3

19TV 23 22.1 24.0 26.5
19TH 23 23.8 26.3 26,2
29C 24 28.9 31.8 31.5
28LSB 17 20.7 22.1 19.5
28USB 17 20.2 20.9 26.1

-Post-launch measurements by K. Betaharon, I. Atohoun, and R. Johnson; D-1 on
8/21/78; D-2 on 8/21/78; D-3 on 9/5/78.

The model distributions of excess rain attenuation were calculated
using software developed at COMSAT Laboratories. In this model, for a
given percentage time, P, the rain rate, R (mm/hr), is determined and the
effective path length, L, is computed. This calculation of effective.path
length (L as a function of percent time and path elevation angle) is based
on more recent information [21] and a much improved curve fit for a rain-
rate-dependent effective path length [22]. The specific attenuation a (dB/
km) is calculated using the expression [21]

a = aR' (dB/km) . (1)

where R is the point rain rate (mm/hr) and a and b are constants de-
pendent on frequency, temperature, and drop size distribution.

The path attenuation A for a particular percentage time is computed
using the expression

A = aL (dB) . (2)
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Figure 5a . Cumulative Distributions of Fading at 12, 19, and 29 GHz
A long the Earth -Satellite Path

For 12 and 19 GHz, the model is in very good agreement for the per-
centages of time greater than 0.03 percent, whereas for 29-GHz signals,
the model predicts higher attenuation than the measured data for all per-
centages of time less than 0.5.

ATTENUATION ABOVE CLEAR SKY IdBI

10 15 20 25 30 35

Figure 5b. Comparisons of Measured Attenuation with Theoretical
Distributions Based on Measured Surface Point Rain Rates

11

Figure 6a shows the measured attenuation distributions for the second
year of measurement for 12, 19, and 29 GHz. Figure 6b compares
measured distributions with model distributions based on Rice-
Holmberg rain parameters [19], M equal to 797 mm, and (3 equal to 0.3.
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Figure 6a. Cumulative Distributions of Fading at 12, 19, and 29 GHz
Along the Earth-Satellite Path

For this measurement period, the model distributions are in good
agreement for (3 equal to 0.3 for the three frequencies 12, 19, and 29 GHz,
and for percentages of time greater than 0.01.

Figure 7a shows measured attenuation distribution for the third phase
of the measurement period. The 19-GHz horizontally polarized signals
consistently show more attenuation than the 19-GHz vertically polarized
signals for all percentages of time greater than 0.018, where the

COMSTAR D-2
ELEVATION ANGLE -41'
PERIOD FROM 8/17/77 to 8/18/78

A A 29 GHz C --A Model

H 19 GHz H1 o---0Model
19 GHz V

O-0 12 GHz SAD ---- Model

(DISTRIBUTION FROM RICE-HOLMBERG
MODEL FOR M - 797 mm, 9-0.3)

5 10 15 20 25 30 35

ATTENUATION ABOVE CLEAR SKY IdB)

Figure 6b. Comparisons of Measured Attenuation with Theoretical

Distributions Based on Measured Surface Point Rain Rates

two curves cross each other. This discrepancy may be attributed to
uncertainty in the data due to the PILL losing lock for high rain rates. The
attenuation distributions for 12 and 29 GHz behave normally as observed

during previous years.
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Figure 7a. Cumulative Distributions of Fading at 12, 19, and 29 GHz
Along the Earth-Satellite Path

Figure 7b compares measured attenuation distributions with the
model predictions based on the Rice-Holmberg rain parameters M equal
to 748 mm and P equal to 0.3 and 0.4. The maximum deviation from
measured and theoretical distribution occurs at 0.1 percentage oftime for

10 15 20 25 30 35

ATTENUATION ABOVE CLEAR SKY IdBI

Figure 7b. Comparisons of Measured Attenuation with Theoretical

Distributions Based on Measured Surface Point Rain Rate

19 and 29 GHz. Table 3 compares attenuation for 12, 19, and 29 GHz for
the entire measurement period. This table shows that measured
attenuation is not only a function of frequency and path elevation angle
[13], but also depends on the nature of the rain for that particular year.
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TABLE 3. ATTENUATION (DB) STATISTICS FOR

ENTIRE MEASUREMENT PERIOD

PERCENT TINE

OF TIIE YEAR

ATTENI AEON

EXCFF DED

12

21 41 43.5 21 41 43.5 21 41 43.5

FREQUENCY (GHz)

19

ELEVATION ANGLE (DEG

29

I.0 0.5 0.25 0.25 L0 - 0.75 3.0 1.8 4.2
0.5 1.0 0.6 0.6 2.4 1.3 3.0 5.5 3.8 7.4
0.3 1.5 1.0 0.9 3.75 2.5 5.0 7.9 6.0 10.2
0.2 1.8 1.4 1.35 5.0 3.6 6.5 10.5 8.0 12.5
0.1 3.0 2.25 2.25 8.6 6.0 9.75 15.6 13.4 17.25
0.05 4.25 3.25 4.25 13.0 9.8 13.0 22.0 19.0 22.6
0.03 5.1 4.1 5.75 16.0 14.0 16.0 27.0 24.5 26.6
0.02 5.75 5.5 7.0 18.5 17.5 18.75 31.6 28.4 30.0
0.01 6.8 8.5 8.9 22.2 - 23.75 - - -

Figure 8 compares slant path attenuation with equiprobable values of
rain intensity for elevation angles of 21 ° and 43.5° and for frequencies of
12, 19, and 29 GHz. Basically, these curves are in agreement with the idea
[231 that attenuation increases as the elevation angle decreases for a
particular frequency. In Figure 8, however, the curves for elevation angles
21 ° and 43.5° intersect each other for frequencies 12 and 19 GHz. It is
important to note that such variations were also observed by others [24],
[25] with the attenuation statistics and rain rate statistics measured
concurrently at the same site. It should also be noted that although the
curves in Figure 8 represent variations of attenuation with rain rates for
the same percentage of time, the measured data for different elevation
angles belong to entirely different time periods. In other words, there is
no overlapping period where the measured data are available for two
elevation angles concurrently. Therefore, a long-term measurement
which includes frequency, elevation angle, and year-to-year variability of
rain at a particular site of interest would be extremely useful in
establishing a propagation model for predicting attenuation.

Diurnal and fade duration statistics

The diurnal distribution of excess attenuation represents the cumula-
tive fade duration (min) of a given fade level that was equalled or
exceeded during a particular hour of the day, and its variations for the
entire measurement year. In Figures 9a through 9d, the diurnal distribu-
tion of excess rain attenuation for frequencies of 12 GHz, 19 GHz-V

PRECIPITATION FADFS AT 12, 19, AND 29 GIIZ 17

Figure 8. Comparisons of Slant-Path Attenuation with Equiprobable

Values of Rain Intensity as a Function of Frequency and Elevation Angle

(vertical polarization), 19 GHz-H (horizontal polarization) and 29 GHz
are presented for the COMSTAR D-1 beacon measurement period. From
Figure 9a it is clear that attenuation values of greater than 4 dB were
observed for 12 GHz during 0400 to 0500, 1300 to 1700, and 2300 to 0400
hours local time. No fades greater than 4 dB were observed in the morn-
ing and late evening hours. As the frequency increased to 19 and 29 GHz,
attenuation exceeding 4 dB was observed throughout the day (Figures 9b
through 9d).

Fade duration histograms of excess rain attenuation give information
about how many fades of a certain attenuation level occurred during a
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Figure 9a . Diurnal Distribution of Rain Fades at 12 GHz

given time period and how long the fades lasted. For instance, Figures 10a
through 10d represent fade duration histograms for 12-GHz, 19-GHz-V,
19-GHz-H, and 29-GHz signals, respectively, during the period 1976 to
1977. Figure l0b shows that there were about 132 fades for which attenua-
tion exceeded 4 dB, 97 fades for which attenuation exceeded 6 dB, and 42
fades for which attenuation exceeded 12 dB. The longest fade of 4-dB
attenuation level lasted 70 minutes, that of 6-dB lasted 54 minutes, and
that of 12-dB lasted about 49 minutes.

At higher frequencies, there are more fades of all levels of attenuation
with durations greater than those of the 12-GHz fades. Quantitative
analyses at the duration and diurnal variations of higher attenuation

levels are expected to appear in future papers on COMSTAR beacon
measurements.

12 16 18 2
I I 1
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0>6 dB
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Figure 9b. Diurnal Distribution of Rain Fades at 19 GHz
(Vertical Polarization)

Conclusions

19

Rain and radiometer data, 19-GHz vertically and horizontally polarized
signal attenuation, and 28-GHz attenuation data have been reduced and
analyzed for a period of approximately four years.

The observed rainfall for an average year at Clarksburg, Maryland,
was less than the mean annual rainfall (945 mm). The average (3 for the
entire measurement period, however, was the same as the expected mean
value (0.3) for Clarksburg.

The observed precipitation attenuation for 12, 19, and 29 GHz has
patterns similar to those observed previously [2], [3]. The 29-GHz signal
attenuated the most and the 12-GHz signal, the least. In general,
observed attenuation is a function of path elevation angle. A long-term
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Figure 9c. Diurnal Distribution of Rain Fades at 19 GHz
(Horizontal Polarization)

data base [4], [20], [23] is required to deduce any functional relationship
between the elevation angles and attenuation at different frequencies.
The attenuation data have consistently shown more attenuation for
19-GHz horizontally polarized signals than for 19-GHz vertically
polarized signals, except in the third and fourth years, where the two
curves cross each other at 0.018 percent of the time. This discrepancy, as
mentioned before, is due to uncertainty in the measured data for high rain
rates.

The measured attenuation for all three frequencies is in fairly good
agreement with theoretical prediction based on equations (1) and (2). The
discrepancy in the measured and theoretical distributions for 12, 19, and
29 GHz can be mainly attributed to weakness in the model used in finding
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Figure 9d. Diurnal Distribution of Rain Fades at 29 GHz

the effective path length [2], [23]. The method of finding the effective path
lengths has not been well established. Further work in this area should
provide data for a more accurate theoretical prediction model.

The diurnal distribution of excess rain attenuation for 12 GHz,
19 GHz-V, 19 GHz-H, and 29 GHz indicate that for 19- and 29-GHz fre-
quencies, fades greater than 12 dB have been observed during afternoon,
evening, and nighttime.

Fade duration histograms for the COMSTAR D-1 measurement period
indicate that the total number of fades of attenuation levels increases sig-
nificantly for 19 and 29 GHz. These observations, along with those of
another three years, indicate that precipitation attenuation plays a signifi-
cant role in future communications system design for frequencies greater

than 10 GHz.
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Abstract

This paper describes the design and development of an 8 X 8 satellite switch-
ing center (ssc) for satellite switched time-division multiple-access (SS-TDMA)
operation at 6 GHz (up-link) and/or 4 GHz (down-link). The ssc consists of a
light-weight broadband crossbar microwave switch matrix (MSM) and a distribu-
tion control unit (DCU). Wideband Wilkinson power dividers/combiners and low-
power-consuming resistively matched PIN diode switches have been developed to
provide highly flexible interconnect possibilities that are nearly communications
transparent in the 3.5- to 6.5-GHz frequency range. The Deis consists of a micro-
processor-based design for the telemetry and command interface subsystem, and
custom-designed LSI chips to control and drive the microwave switches. Broad-

band push-pull connectors are used to simplify assembly and disassembly of the
modular ssc. Each switching module, which contains 8-PIN diode switches, has
been provided with a separate switch control electronics circuitand dual memory.
Design considerations and performance characteristics of the ssc are presented.

Introduction

SS-TDMA [l] involves the rapid and cyclic interconnection of up-link
beams of a multiple beam satellite to the respective down-link beams.
The resulting SS-TDMA frequency reuses within the existing spectrum

29
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allocations increase satellite utilization efficiency significantly in com-
parison to conventional multiplexing, modulation, and multiple-access
schemes. To increase the communications capacity of the INTELSAT-VI
satellites, for instance, six frequency-reuse beams will be included for the
SS-TDMA transmission of two 120-Mbps QPSK channels per beam.

In addition to the multibeam antenna, the principal on-board element
of an SS-TDMA system is the ssc, which consists of an MsM, a DCU, and a
time-base generator (TBG) [2], [3]. The MsM routes communications traffic
by cyclically connecting the required microwave input-to-output ports.
The DCU controls the states of the microwave switches, and receives and
stores the control data from a reference earth station via the telemetry,
tracking, and command (TT&c) subsystem. The TBG provides accurate
frame and frame unit reference timing information to the Dcu and the
MsM. The ssc achieves the desired rapid and cyclic interconnectivity
among the beams, thus allowing TDMA bursts transmitted in one up-link
beam to be routed to all other down-link beams, as dictated by traffic

requirements.
This paper presents the design of a broadband ssc developed at

COMSAT Laboratories. The 3.5- to 6.5-GHz bandwidth characteristics of
the ssc provide a single design for all the channelized bands in the 6-GHz
up-link and/or 4-GHz down-link bands. This ssc may be used as a
broadband IF on-board switching center for 6/4-, 14/11-, and/or
30/20-GHz SS-TDMA satellites. A photograph of the MsM and control elec-
tronics assembly of the ssc is shown in Figure 1.

SSC operation

This section provides a brief introduction to the ssc, as well as a cursory
description of SS-TDMA operation [1]-[4].

Figure 2 illustrates the operation of an on-board switch matrix. The sys-
tem [5] includes only three stations redrawn for illustrative purposes on
either side of the satellite to separate the up- and down-link transmission
paths. In this representation, the primary reference station (E/S #1)
synchronizes the transmission of its reference bursts with respect to ssc
switch states. These bursts may also contain communications data. Each
terminal, including the standby reference station, organizes its burst
transmission so that bursts to each destination occupy discrete time posi-
tions with respect to the designated reference burst; each earth station
adjusts the timing of its transmissions by viewing its own loopback burst
in the TDMA frame. The bursts must be properly timed to avoid over-
lapping at the satellite and to permit the ssc to route up-link bursts to
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Figure 1. Microwave Switch Matrix and Control Electronics Assembly

appropriate down-link destinations by using a sequence of programmed
switching states. In Figure 2, each of the bursts to each destination is
designated by a different pattern. For example, black bursts are destined
to E/S #1, whereas those designated by cross-hatch or dot patterns are
destined to E/S #2 and #3, respectively. Inserts at the bottom of the figure
show how the ssc routes the traffic bursts.

To accommodate several stations located within the same beam, a
number of bursts of varying durations may be transmitted to the satellite
within each switching state. Furthermore, to maximize overall satellite
capacity, it may be necessary to repeat, in each frame period, some of the
same interconnections (or switching states) among the up- and down-
links. Sinha [6], Ito et at. [7], and Inukai [8] have formulated algorithms for
selecting and scheduling these states, and have estimated the number of
switching states necessary to accommodate traffic requirements. Inukai
has shown that the upper bound for the number of switching states
among Nbeams is N2 - 2N + 2. The duration of the switching states, in
particular the shortest frame interval, depends on the transmission rates
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to the satellite, the duration of the periodic frame, and the overhead loss
due to TDMA guard spaces and satellite switching times. To ensure maxi-
mum switch pattern flexibility, a number of selectable frame unit incre-
ments per frame period should be included in Dcu design.

Figure 3 is a simplified block diagram of an SS-TDMA satellite for six fre-
quency reuse beams. The data controlling the programmable cyclic
switching states are transmitted for storage in the off-line memory of the
Dcu via the Tr&c subsystem. The off-line memory is always available for
switch state information update for sse control, while a DCU on-line
memory actively controls the MSM. The new switch-state information is
implemented by exchanging the roles of on-line and off-line memories.
Data transfer, data verification commands, and other telemetered infor-
mation are routed via the TT&C subsystem. Time base control, if neces-
sary, can be derived from an on-board regenerator or from periodic
ground command via the TT&C subsystem [9]. Figure 4 is a more genera-
lized block diagram of a frequency reuse satellite. In this representation,
the available bandwidth in each spot beam is channelized, and a number
of switching planes may be used in various channels to carry the SS-TDMA
communications traffic.
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SSC description

A crossbar configuration of a fully redundant 6 X 6 SSC is shown in
Figure 5. It consists of an MSM, a DCU, and MsM redundancy networks.
The MsM consists of eight input and eight output distribution networks
interconnected via a set of8 X 8 microwave switching elements. Redun-
dant paths are provided via an array of64 switching elements to serve a set
of six frequency reuse beams.
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Figure 5. 6 X 6 SSC for SS- TDMA Satellite

The DCU may be a single unit or may be partitioned as indicated in
Figure 5. In this design, the switch control electronics (SCE) of the
Dcu are integrated within each microwave input distribution (horizontal
line) network to control and drive all the eight microwave switches
associated with a particular input. The telemetry and command interface
(TCI) section of the DCU contains all functions common to the SCE and
interfaces with the TT&C subsystem. For the design of the TBG, a long term
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clock drift no greater than one part in 1011 is required for plesiochronous
operation with the terrestial system. Since the on-board clock may drift as
much as one part in 10° over satellite lifetime, clock correction schemes
will be required [10]. Redundant TCI/TBG sections and DC/DC converter
subsystems with cross-strapped interconnections may be provided to
enhance the overall reliability of this interface. The performance
objectives listed in Table I were established for the ssc design.

TABLE 1. SSC PERFORMANCE CHARACTERISTICS

Array Size 8 X 8
Bandwidth ( instantaneous) 3.5 to 6.5 GHz

Insertion Loss of Any On-Path =23 dB
Insertion Loss Variation (any 500 MHz) Sl dB
Path-to-Path Insertion Loss

Variation (500 MHz)
On-to-Off Isolation
Group-Delay Variation (any 500 MHz)
Phase Linearity (Pou,S-15 TBm)
Amplitude Linearity (CGp for
Two Equal-Amplitude Tones

(Puu, 5 -IS dBm)
Frame Units per Frame

Length of Frame Unit

Frame Period
Rise or Fall Time
DilTerential Delay
Timing Jitter
Connectivity

MSM Mass
MSM Volume
Power Consumption

Si.? dB
L50 dB
50.5 ns
<3

^:45 dB
251) or 500 (selectable)

15, 30, 60, or 120 ,s
(selectable)
3.25 to 60 ms (selectable)

160 ns
±2.5 as (max)

ns (max)
Any N to any At

2.95 kg
15X 16X II cm3
<7.5 W

The MSM redundancy network consists of two sets of eight electro-
mechanical T-switches that are connected to form two redundancy rings
[11], [12]. In Figure 5, redundancy rerouting via the T-switches is indi-
cated for four assumed switch junction failures. This network topology
significantly enhances overall SSC reliability by providing a maximum of

rerouting alternatives.

MSM design

The MsM may be implemented in cellular [13], rearrangeable [14], [15],
or crossbar configurations. An analysis of these architectures (see Ap-
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pendix A) indicates that the crossbar switch matrix configuration is the
most desirable for SS-TDMA applications, and, therefore, it was adopted for
this design. Crossbar MsMS [16], [17] have been designed to operate at
4 GHz with a 500-MHz instantaneous bandwidth. The design features ofa
3.5- to 6.5-GHz bandwidth, 8 X 8 crossbar MsM will now be presented.

The major building blocks of the 8 X 8 MsM are the eight input and
eight output frame modules. Each input frame module consists of an
8-way divider, eight PIN diode switches, and an SCE assembly. Each out-
put frame module consists of an 8-way divider/combiner network. These
input and output frame modules are assembled on a central frame via
wideband, push-pull, microwave connectors to form a 3-dimensional
structure. The orientation of these modules is arranged so that all eight
connectors at the output of each divider/switch module are intercon-
nected with one input of each output combiner module. The on states of
the PIN diode switches establish the interconnections between an input
port and various output ports of the MsN. The switch states of each input
shelf are dynamically controlled from the SCE, which provides the proper
current bias to the eight PIN diode switches via eight feedthrough con-
nectors in each input frame module. These modules are designed to pro-
vide mechanical rigidity to the MsM structure and heat sink capability to
the sCE. The modular configuration of the MsM has proved to be particu-
larly convenient during testing, troubleshooting, and replacement of
components before and after assembly of the matrix.

The 3.5- to 6.5-GHz broadband performance of the 8-way divider is
obtained by designing a 2-way, and two 4-way Wilkinson dividers [18]
with multistep cascaded line lengths and interconnecting resistors [19].
To satisfy the physical layout requirement, the 2- and 4-way Wilkinson
dividers were designed with four and six sections, respectively. In
addition, a 500 transmission line is included between each arm of the
2-way divider and the input to each 4-way divider to adjust the physical
separations of the output ports.

The physical layout of an 8-way divider/combiner and the element

values for transmission lines and resistors are included in Figure 6. Some
of the resistors were specifically designed to be open circuits to simplify
physical layout and yet achieve the desired bandwidth response. Figure 7
is a photograph of an 8-way divider corresponding to the output assembly
of the MSM; its transmission loss, return loss, and output port-to-port
isolation characteristics over the 3.5- to 6.5-GHz band are presented in
Figure 8. All dividers in the MsM had path-to-path insertion loss variations
less than 0.4 dB, path-to-path isolation greater than 18 dB, and input
return loss better than 13 dB over the 3.5- to 6.5-GHz band.
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To improve MsM electrical performance, a resistively matched PIN
diode switch [20] was designed to provide good impedance matching
across the desired frequency band for both of its switching states. To meet
the desired isolation requirements, previously designed PIN diode
switches [16], [17] used only two PIN diodes and reflected most of the
incident RF power when the diodes were forward biased (RE off state). In
this case, the MsM isolation and path-to-path insertion loss variations
suffer considerable degradation, particularly when broadband operation
is required. To overcome this mismatch, the switch configuration shown
in Figure 9, which required four PIN diodes separated by quarter wave-
length transformers in the circuit, was designed.

In the RF off state (forward bias), all four diodes are in low impedance
(effective short circuit) states and only the 500 resistors in the end net-



38 COMSAT TECHNICAL REVIEW VOLUME 12 NUMBER 1, SPRING 1982

Figure 7. 8-Way Divider in Output Frame

works are seen as the input and output ports of the switch. The short cir-
cuit resulting from biasing the central diodes is transformed through
quarter wavelength transformers into open circuits across the 500
impedances at the input and output ports. Short-circuited quarter-wave
high impedance transmission lines are added across 500 resistors to
bypass the DC current of the switch and hence reduce the power
dissipation. In the RF on state, all the PIN diodes are open circuited;
therefore, only 500 transmission paths are seen at the input and outputof
the switch element. The transmission, isolation, and return loss per-
formance characteristics over 3.5- to 6.5-GHz frequency bands for a
typical switch are shown in Figure 10. The insertion loss increases
gradually from 1.4 dB at 3.5 GHz to 2.6 dB at 6.5 GHz, the return loss is
better than 15 dB in the RE on state, and an off-state isolation greater than
50 dB is achieved across the 3-GHz bandwidth.

All the PIN diodes were carefully selected so that they had similar DC
and RE characteristics. All 64 switches integrated in the input shelves of
the MSM display less than 0.2-dB peak-to-peak scatter of their insertion
loss characteristics atany frequency in the 3.5- to 6.5-GHz range. A typical
input shelf assembly is shown in Figure 11 and its measured RF
performance characteristics are shown in Figure 12. Each input shelf
assembly has path-to-path insertion loss scatter less than 0.5 dB at any

SATELLITE SWITCHING CENTER FOR S5- TDMA 39

(OP) NOI1V1OSI IHOd Indlno aNV SSO1 NBn13H

2

m

(EP) SSO1 NOISSIWSNVHI



40 COMSAT TECHNICAL REVIEW VOLUME 12 NUMBER 1, SPRING 1982

BIAS

Figure 9. Broadband Resistively Matched Microwave PIN-Diode Switch
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Figure 11. PIN-Diode Switches and 8-Way Divider in Input Frame
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frequency in the 3.5- to 6.5-GHz frequency band, and an insertion loss
slope less than 1.5 dB over the 3-GHz MSM bandwidth.

The Msm has been designed to meet all electrical and environmental
requirements. Its mechanical configuration can withstand vibration
levels normally encountered in spacecraft. Stress relief has been provided
at all critical interconnections susceptible to failure during vibration tests
[21]. The inputand output frame modules of the MsM have been designed
so that all of their longitudinal natural resonance frequency modes are
in excess of 200 Hz. Kovar has been used for the support frames because
its coefficient of thermal expansion is nearly the same as that of alumina
substrates used for microwave integration. Since Kovar is a relatively poor
conductor, it has been gold plated for MIC work. Aluminum heat sinks,
provided for the SCE circuits in each input shelf, also provide a ground
return for the SCE. MsM mass has been reduced considerably by fabri-
cating hollow channels for the MSM support structure without sacrificing
mechanical rigidity.

DCUffnnctions and design

The primary function of the DCU is to provide the MsM with control
signals corresponding to the sequence of switch states. Each state repre-
sents a particular interconnection configuration of the MsM, and the total
sequence of states defines an SS-TDMA frame. While states may be vari-
able in duration, each state duration must contain an integral number of
frame units where a frame unit is the smallest period for which a particular
switch configuration is allowed to exist.

DCUS have been developed from hybrid combinations of commercially
available logic circuits and MOS/LSE devices [22], and PMOS/LSI technology
[23]. The DCU in the ssC described in this paper consists of a micro-
processor-based design for the telemetry and command interface (TCI),
and custom-designed LSI chips to control and drive the microwave
switches. Figure 13 is a block diagram of the complete DCU. The memory
circuits of the DCU are sufficiently large to store the switch states of the
MSM for cyclic implementation, and to allow any inputto be connected to
any one or a number of outputs (point-to-point or point-to-multipoint
interconnections). On-line and off-line memories are provided to change
the MSM control switching patterns without affecting the dynamic opera-
tion of the SSC. New control data may be written to the off-line memory
and after ground verification via TT&C subsystem; off-line and on-line
memories can be interchanged on command so that the new switch
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Figure 13. Simplified Block Diagram of the DCU

patterns may take control of the MSM. A maximum of 500 frame units per
frame with a minimum frame unit duration of 15µs are available. Since all
eight switches in each input shelf of the MSM are independently con-
trolled, a memory size of 8 kbits per shelf is required. The memory is
accessed serially with an access time of at most 900 ITS.

The DCU is of the partitioned type, consisting of a TCI and SCE for eight
individual MSM shelves (Figure 13). The TCI provides DCU reference con-
trol timing, collects shelf status signals for the spacecraft telemetry, and
performs all interfacing functions between the SCE of the DCU and the
TT&C subsystem of the spacecraft (Figure 14). Each SCE contains all
timing regeneration, memory control and bus interface functions,
memory circuits and PIN-diode switch drivers necessary for control and
operation of the shelf. All MSM shelves have been identified by unique
addresses and connected by an 8-line system coordination bus. Thus, the
bulky cables in previously developed DCUS have been eliminated with the
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advantages of reduced mass and simplified assembly, and/or replacement
of faulty modules.

Telemetry and command interface

The TCI controls DCU timing and synchronization and provides access
to the DCU from the spacecraft's TT&C subsystem through four ports:
command, telemetry, data input, and data output. The TCI interfaces with
the shelves via five of the system coordination bus lines listed in Table 2.
The remaining system coordination bus wires carry DC power and ground
connections for the shelves. All TC1 timing functions are derived from a
reference 5.33-MHz oscillator.

The TCI is implemented with an RCA 1802 microprocessor using
2 kbytes of random access memory (RAM), and 1 kbyte of programmable
read only memory (PROM). Status data and program variables are
stored in the RAM while the TCI operating firmware is implemented in the
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Command Bus Carries serial command data to shelves for execution.

Master Clock Bus A system timing signal having a frequency 16 times the

frame unit rate.

Synchronization Bus A timing signal having a period of one frame.Itsynchro-
nizes shelf counters and establishes clock phases within

the shelves.
Data Bus A bidirectional data bus that carries memory addresses,

data, and status information between the TCI and

shelves.
Read/Write Clock A clock derived from the TT&C subsystem, data read, and

data write clocks that sequences data transfers on the

data bus.

PROM. All timing and synchronization functions are carried out by com-
plementary metal oxide semiconductor (CMOs) and low-power transistor
transistor logic (LPTTL). A hardware block diagram is shown in Figure 15.
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The logical functions implemented in the 1802 microprocessor transfer
command, status, and memory data within the DCU, and between the
DCU and TT&C subsystems. These functions are command receiving and
distribution, status collection and transmission, and data transfers for
MsM state control. Each of these functions will be described in the follow-

ing subsections.

Command processing

The command processing function of the TO consists of accepting
serial commands from the TT&C interface, decoding them for possible
data transfer operations, and forwarding them to the command bus line of
the system coordination bus. For data transfer commands, the command
processing function of the TCI configures its data bus multiplexer and
read/write clock multiplexer to the appropriate state for the type of trans-
fer that is about to occur. In the case of commands not involving data
transfer, the command processing function requires only that the com-
mand received be forwarded to the scE for execution.

In the absence of TT&C subsystem generated commands, the Tct
autonomously generates no operation (NOP) commands to each of the SCE
circuits for collecting status information.

Status collection and transmission

Collection of SCE and TO telemetry data is accomplished by the tel-
emetry processor function in cooperation with the command processor
function. SCE status bits are generated by each MsM shelf each time a valid
command is received. These six bits express pertinent conditions of the
SCE, and are important for operation and for detection of failures. Further
details on status bit definitions can be found in the SCE description.
Because of the small number of lines available on the system coordina-
tion bus, a system of'polling has been used whereby the Tci sequentially
requests from each shelf its status bits of information. These status bits
are stored in RAM of the TCI from which the TT&c subsystems can access
them. The status bits are transmitted from each SCE to the TCI along the
data bus line of the system coordination bus during the interval
immediately following command transmission. The TCI command pro-
cessing function automatically issues NOP commands for status collection
whenever TT&C subsystem command actions are not occurring. This
permits regular status updates to the RAM in the TCI. The TCl prefixes
the shelf status bits sent to the telemetry encoder by 24 status bits of its
own, expressing the contents of its command register, and other
condition signals.
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Data transfer function

The data transfer function of the Tel involves control of both data and
read/write clock multiplexers, and block counters in the TCI. Depending
on the command action required, the data multiplexer is configured to
pass data and clock signals either to or from the SCEs on the data and read/
write bus lines, respectively. Status data from the commanded SCE are
received on the data bus before the same is configured for data transfer,
and during the interval of data transfer no status polling is performed by
the TcI. Reception of another command terminates any data transfer
sequence in progress.

Switch control electronics

The SCE controls each shelf by cyclically applying 8-bit codes to the
shelf's control inputs, which directly drive the microwave PIN diodes. A
synchronization pattern (sync word code) is implemented during each
cycle to ensure that each node of the communications network is syn-
chronized to the beginning of the SS-IDMA frame.

The SCE microcircuit (Figure 16) interfaces the TCI circuit via the
system coordination bus, which consists of the command bus, data bus,
the data clock, the master clock, the sync signal, and three power supply
voltages.

The SCE interfaces the MSM PIN diode switches through PIN diode
drivers. Six hardwired inputs form a particular shelf address, which is
used by the SCE's command processor to identify the commands
addressed to it. A single input line is provided to determine the length of
the sync word. Depending upon the state of this input, the sync word will
be output for 5/8 of a frame unit or an entire frame unit. Two external
memories store the duplicate cyclic patterns which control the
configuration of the PIN diode switches.

The SCE microcircuit provides four modes of operation: normal, data
transfer, memory select, and shelf off.

Normal mode

The timing circuits, which control the operational sequence ofthe SCE,
generate the three clock signals (see Figure 17). The clocks throughout
the DCU are synchronized by the sync signal from the system coordination
bus, which ensures that the clock phases and counters of all the sees are
aligned. The period of the sync signal is a function of frame length and
frame unit rate. The memory bit clock increments the on-line and off-line
memory counters located in the memory control and timing unit. The
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status clock transfers the status bits into the telemetry processor. The
output clock transfers the memory data from the on-line memory into the
output buffer multiplexer.

After both on-line and off-line memories have been loaded with the
desired data pattern, they are synchronized with each other by the frame
sync signal. During the one state of the memory bit clock, the on-line
memory data bit at the memory address designated by the on-line
memory counter is output from the memory and transferred into the
input stage of the output data shift register by the output clock. The
output of the first stage of this register is applied to one input of the

memory check-fail comparator.
During the zero state of the memory bit clock, the data hit stored in the

equivalent memory address in the off-line memory is output to the
memory check-fail comparator. Since the data bits applied to the memory
check-fail comparator represent the same bit in identical memory
locations, the memory check-fail comparator should indicate an equality.
The status clock transfers the condition of the memory check-fail
comparator to the S c E's telemetry processor.

This process is repeated until a complete serial data word has been con-
verted to a parallel word by the output buffer multiplexer. The data word
is then parallel transferred to the PIN diode drivers, where it is signal con-
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ditioned by the output buffer and is directly applied to the PIN diodes of
the MSM input shelf.

Since the command processor receives no operation commands in the
normal mode of operation, the telemetry processor collects the internal
status bits of the SCE and transmits them to the TCI circuit via the data line
of the system coordination bus for storage and eventual transmission to
the ground command center. The following status bits are transmitted to
the TCI:

a. Parity: indicates the parity of the data (if any) transferred on the
data bus during the last command.

b. Memory Sync Fail: indicates that the counters for the off-line and
on-line memory are not synchronized, preventing valid switch

pattern comparison.
c. Memory Check Fail: indicates that the on-line and off-line

memory contents differ by at least one bit.
d. A OL: indicates that memory A is currently assigned as the on-

line memory, and memory B is the off-line memory.
e. LMA: indicates that the SCE has just executed a load memory

address command, and is expecting a read or write command.
f. Command Format "Incorrect": indicates that the command was

not properly received.

When both memories are synchronized, both memory counters output
the identical address data. Should the synchronism between the two
counters be lost, the counters will be resynchronized by the frame sync
signal. This approach limits the loss of synchronism to one frame.

The on-line and off-line counter outputs are compared during each
memory clock cycle by the memory sync fail comparator. The status clock
transmits the status of this comparison to the telemetry processor for

transmission to the TCI circuit.
The output is updated continuously per frame unit except for the state

which occurs during frame sync period. During the sync word period
initiated by the frame sync signal, a predetermined code is output from
the sync word register to the PIN diode driver via the output buffer multi-
plexer. This code identifies the starting point within the frame and
uniquely identifies each matrix within the system. When the sync word
period elapses, the data stored in the on-line memory are output to the PIN
diode driver via the output buffer multiplexer.

Data transfer mode

The data transfer mode of operation consists of transferring data, either
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from the off-line memory (read) or to the off-line memory (write), in
single 8-bit bytes or blocks of bytes. The only difference between a read
command and a write command is the direction of the bidirectional data
bus and the memory control logic. While the memory control section is
responding to a read or write command, the remainder of the SCE micro-
circuit operates in its normal mode of operation.

When either a write or read command is decoded by the command
processor, status information is no longer transmitted by the telemetry
processor, the off-line memory counter is reset, and its clock input is
transferred from the internal memory bit clock to the external data clock
input. When the data clock is received from the TCI circuit, the off-line
memory counter begins incrementing at the data clock rate.

Because it is necessary to continue to drive the microwave switch
matrix from the on-line memory during each memory address increment,
the off-line memory must be synchronized with the operation of the on-
line memory. After the off-line data bit is transferred, no further data are
transferred until the next data clock. The process continues until the com-
mand is terminated by the command processor.

If the read command is active, the internal data bus is transferred to its
output state, which connects the output of the off-line memory to the
external data bus. Memory data are transferred from the off-line memory
to the data interface during the first zero state of the memory bit clock,
which occurs during the one state of the data clock. No further data are
transferred until the leading edge of the next data clock is detected.

If the write command is active, the internal data bus is transferred to its
input state, which connects the input of the off-line memory to the
external data bus. Memory data are written into the off-line memory by
the logical combination of the output clock and the write enable strobe
from the command processor.

There is a secondary form of data transfer between the SCE microcircuit
and the TCI circuit known as the block move, which transfers single bytes
of memory or a number of bytes of memory data. When the block move
mode of data transfer is implemented, the off-line memory counter is
preset to the desired memory address by loading the address into the
counter from the external data bus via the load memory address com-
mand from the command processor. Data are then transferred between
the SCE microcircuit and the TCI circuit, as determined by the next data
transfer command received by the command processor. Data will con-
tinue to be transferred during the occurrence of each successive data clock
until the active data transfer command is terminated by a new command.
Any command can be terminated by another valid command.
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Memory select mode

The design of the ocu provides for instantaneous transition from one
switching pattern to another. Selection of memory A or B as on-line or off-
line memory is achieved by the use of either the A orB on-line commands
followed by the memory select command. The memory select command
synchronizes the memory interchange so that all shelves respond simul-
taneously.

Shelf off mode

In the case of internal failures within the RAMS or some other section of

the SCE or an external failure, it may be necessary to turn off each indi-
vidual shelf. This is achieved by issuing a shelf off command which turns
off the microwave PIN diode driver. The shelf can be turned on again by
issuing a shelf on command.

DCU implementation

The DCU was implemented as two different assemblies: the first
assembly, which contains all of the functions common to the MSM and is
located externally to it, consists of the TCI unit, the reference oscillator,
and the power supply unit. The second assembly, which consists of the
SCE MOS/LSI microcircuit and two 4 kbit X 1 RAMS, is located within each
input shelf of the MsM. Each SCE MOS/LSI microcircuit contains all of the
control functions for the 8-PIN diode switches located within each input

shelf (Figure 18).
The Tci unit, which controls the operation of each scE MOS/LSI micro-

circuit, is connected to each input shelf of the MsM via an 8-conductor
cable which connects each input in parallel from shelf I through shelf N
(in this system N = 8). The 8-conductor cable carries all command and
data transfer lines, clock lines, and power supply voltages required by the
SCE MOS/LSI microcircuit, its output driver circuit, and the two 4 kbit x I

RAMS.
One of the concerns for flight qualification of the developed ssC is the

radiation tolerance of SCE microcircuits, the 4 kbit RAMS, and the 1802
microprocessor [21]. Radiation testing ofNMOS circuits, which is the tech-
nology employed in the fabrication of the SCE and RAM microcircuits,
indicates a wide variation in radiation resistance between different
manufacturers of identical circuits, and even between lots of the same
manufacturer. Tests performed on 1802 microprocessors produced with a
modified process showed failure at 5 X 10' rads (Si) [24]. The DCU LSI
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Figure 18. Switch Control Electronics Circuit Assembly

chips must have a radiation tolerance exceeding 4 X 10' rads (Si) for
survival in a 7-year spacecraft mission with aluminum shield thickness
greater than 10 mm. Radiation hardness of the LS1 chips will be deter-

mined by radiation tests.

Test results

The MsM and DCU were extensively tested before final integration into
the ssC. The measured insertion loss characteristics of all 64 paths of the
MsM are shown in Figure 19. These are grouped as eight sets of curves,
each corresponding to one input port and all eight outputs. The SCE
microcircuits were successfully tested for logic functions over a tempera-
ture range from 0° to 55°C and for different frequencies of the system
clock. The measured rise and fall times of the RF envelope at the output of
PIN diode switches under the control ofscE are shown in Figure 20. These
transition times are less than 60 ns. The measured electrical performance
characteristics of the ssc indicate that the performance objectives listed in

Table I are being met.

Reliability considerations

The most critical requirement in the design of an ssc for SS-TDMA
applications is the reliability of the interconnections that must be pro-
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Figure 20 . Rise and Fall Times of RFFnvelope of the Microwave Switch
Matrix
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vided during the specified satellite lifetime (7 to 10 years). Extra switch
junctions in the MSM configuration and redundancy networks to accom-
modate any switch junction failures may be required. Failures may occur
due to vibrations during deployment of the spacecraft or random failures
of the active devices within the switches. Various redundancy con-
figurations for a representative 6 X 6 switch matrix, which include func-
tionally redundant paths, were investigated for reliability (see Appendix
B). An examination of computed reliability characteristics for these con-
figurations indicates that a ring-redundancy configuration offers superior
reliability. At least three types of switches may be used with this highly
flexible configuration: double-pole double-throw (DPDT), R-, and T-
switches. Electromechanical latching type DPDT- and R-switches are com-
mercially available and T-switches have been developed. Since T-
switches maximize the number of alternate redundant paths that may be
selected to correct for switch junction failures, they are preferred. In
general, functional path redundancy may be provided at the MSM inputs
and outputs to permit (M - N) and (K - N) failures in an M X K
matrix. Therefore, the 8 X 8 MSM developed at COMSAT Laboratories
may be configured to produce a fully redundant 6 X 6 ssc as shown in
Figure 5, with enhanced reliability.

Conclusions

The design, development, and fabrication of a broadband 8 X 8 satel-
lite switching center has been presented. This ssc is physically compact,
rugged, and easily reproducible. To simplify testing, troubleshooting, and
component replacement, a modular approach easily assembled and dis-
assembled via broadband push-pull connectors was chosen. Mos/LSI
implementation of the SCE microcircuits, flatpack packaging of the LSI
chips and RAMS, and their mounting on a multilayer printed circuit board
further reduced ssc size. The microprocessor implementation of the TCI
provides additional flexibility and compatibility with future spacecraft

requiring only simple software modifications.
The input-to-output beam interconnections are easily and rapidly (less

than 60 ns) achieved in a highly flexible manner. Any of the inputs could
be connected to any or all of the outputs. Identification and location of a
fault or failure are very simple in this crossbar configuration, and
rerouting is easily achieved via a ring redundancy network.
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Appendix A. Microwave switch matrix architecture

A number of generic switch matrix configurations were considered for the Mss
design:

a. Cellular configuration. The configuration of a 4 X 4 cellular switch
matrix [13] is shown in Figure A-I. The basic building blocks of this con-
figuration are the six transfer switches, also known as I3-elements. The [3-

CELLULAR

2 3 4

OUTPUTS

Figure A-1 a. Cellular Configuration of a 4 X 4 Switch Matrix

2-SWITCHING

STATES OF

- ELEMENT

Figure A-I b. Switching States of a R-Element (known also as a C-
switch)

elements assume the two states shown in Figure A-I h and can he obtained
from four single-pole single-throw (BEST) switches. This basic configuration
can be extended to larger arrays by adding the appropriate number
of transfer switches to the grid of a right triangle. The algorithm to provide

one-to-one path connectivity is relatively easy to program, but broadcast
modes are not possible.

6. Rearrangeable configuration. The 4 X 4 rearrangeable switch matrix,
shown in Figure A-2, consists of live n-elements which are interconnected to
provide all of the one-to-one interconnect possibilities between inputs and
outputs. Extension to larger matrices may be achieved by using 4 X 4
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Figure A-1 c. Possible Multipath EVects Through the Cellular Matrix
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submatriccs and a number of 13-clements as building blocks. The 13-clements
must he connected to each 4 X 4 matrix such that the number of j3-elements
l or each signal path may he equalized. Therefore, the path-to-path insertion
loss and transmission delay variations could be made relatively small. In the
canonical (minimum elements) form, rearrangeable matrices are of inter-
rupting type; i.e., some interconnections may require rerouting whenever
other interconnections in the matrix are altered.

e. Crossbar configurations. The configuration of a 4 X 4 crossbar switch
matrix is shown in Figure A-3. Crossbar matrices may he designed as lossy
or minimum loss networks. In the lossy configuration, each signal input is
equally distributed among the N transmission paths, where N is the dimen-

1

i •

3

4

INPUT DISTHIRU I ION NFIWOHKS

1

DU' PUTS

0

Figure A-2. Rearrangeable Configurations o/ 4 X 4 and 8 X 8 Figure A-3. Crossbar Conjigwntion o/a 4 X 4 Microwave Switch

Matrices Using ji-Elements Matrix
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Sion of the square switch matrix array. In the minimum loss configuration, RF
power is reflected from all the spsT switches except the one transmitting the
RF signal to the designated output port. Because of inherent mismatch reflec-
tions, the electrical characteristics such as bandwidth, VSWR, transmission
loss, and group delay ripples are expected to be poorer in the minimum-loss
crossbar switch matrix. Minimum loss configuration requires double the
number of switches required in lossy configuration. Although lossy crossbar
matrices have power division and recombination losses, they are preferred
because of superior electrical performance characteristics among the two

crossbar configurations.

The number of spsT switches required to realize an N X N matrix in any of
these three configurations is shown in Table A-1. Even though the rearrangeable
matrix contains the smallest number of switching elements for N z 16, it is the
least desirable MsM configuration. Because the matrix is interruptive, some
bursts may have to be unnecessarily and temporarily interrupted to accommodate
rerouting through a set of disjoint transmission paths. The input-to-output inter-
connection algorithm is relatively complicated and the switch junction failure
identification necessary to reroute signals through a redundant path of the MsM is
difficult and may result in a temporary transmission outage of the SS-TDMA
system.

TABLE A-I. MINIMUM NUMBER OF SPST SWITCHES

REQUIRED BY THE THREE GENERIC SWITCH

MATRIX CONFIGURATIONS

ARRAY (A) (B) (c)

SI/E CELLULAR REARRANGEABLE CROSSBAR

4X4 24 20 16

8 X 8 112 68 64
16 X 16 480 196 256
32 X 32 1984 516 1024
64 X 64 8064 1284 4096

128 X 128 32,512 3076 16,384
N X N 2N(N - 1) 4(n - I) 2" + 4 N2

where N = 2"

An N X N cellular matrix contains the maximum number of switching
elements as compared to either the rearrangeable or the crossbar matrix. Since
the signals must pass through a number of p-elements , multipath effects shown in
Figure A-1 c would be observed in a num ber of input-to-output connections. Since
the R-elements are cascaded in any particular input-to-output path in both the
rearrangeable and cellular matrices, the path-to-path insertion loss variations
would be critically dependent on the transmission gain or loss of a-elements and
their vswRs . Both of these configurations display relatively narrow bandwidth,
impedance mismatches , and larger transmission loss or gain ripple caused by the
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reflective type cascaded p-element switches. Only one-to-one interconnections
can be provided in these configurations; hence, the use of broadcast mode for
possible simultaneous time synchronization and SS-TDMA network control are not

possible.
Crossbar matrices are significantly more desirable than either rearrangeable or

cellular matrices for SS-TDMA applications, since they are noninterruptive and
only one switching junction is used for each connection. Path-to-path inter-
connection programming is very simple, requiring only drive control to the
desired switchjunction. A failed switch is easily identified from the ground, and
the signal may be rerouted to an alternate redundant path without difficulty. Since
more than 50 dB of path-to-path isolation may be obtained in a microwave
crossbar matrix, the multipath effect is virtually nonexistent. The problem

associated with amplitude/phase nonlinearities is alleviated because all the signal
power levels into the switching devices are equal. The lossy crossbar matrix is pre-
ferred for SS-TDMA satellite switching centers because one-to-one, broadcast
mode, and any n to any in connection patterns are possible.

Appendix B. Redundancy and reliability considerations

Several representative examples of 6 X 6 switch matrix redundancy con-
figurations, shown in Figure B-1, were investigated for reliability. These con-
figurations provide functional path redundancy, which is the most effective
method of enhancing the reliability of crossbar switch matrices. In these
examples, each redundant configuration consists of a number of redundancy
switches and an M X 6 matrix so that six input paths may be connected to M
input ports of the MSM. For the 12 X 6 MsM configuration with two-for-one, four-
for-two, and three-for-two redundancy, the redundancy switches can be recon-
figured to select alternate paths in case offailure ofa switch junction many row. If,

however, switch junction failures are such that the number of available MSM ports
at the output of redundancy switches is less than the number of its inputs, the MSM
would be permanently disabled. In comparison, the ring redundancy provides the
capability of enhancing the reliability of an N X N matrix by allowing switch
junction failures in up to any (Al - N) redundant paths.

The computational technique of Assal etal. [9] was used to derive the following
equations for computing the reliability characteristics of the redundancy con-

figurations included in Figure B-l:

p(6 X 6) = p'R

p(12 X 6, 2 for 1) _ [pspR(I + qR)]°

p(12 X 6, 4 for 2) _ [ps{pR + PRgR(2 + 2p.)

+ pega(1 + 4Ps + p'20111

p(9 X 6, 3 for 2) - [psji4 + pRgR(I + 2ps)[]'
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p(8 X 6, 8 for 6) = PtinR]pR + PR 4R (2 + 4PS + 2PS)

+ q (1 + 4ps + 12p,t + lop + PS)]

p(10 X 6, 10 for 6) = pypR[pR + pRgR(4 + 6ps)

+ P2RqR(6 + 20ps + I91)

+ PRYR(4 + I lps + 50p5 + 42ps + 2P40

+ qR(1 + Bps + 34ps + 74p3 + 67p + 26ps)]

where PR = pt = exp(-6Ajt)

9R = I - PR
Ps = exp(- Asr)
A, = electronic switch junction failure rate
As = failure rate per microwave connecting path of the electrochemical

switch
t = time in hours.

In these computations, it is assumed that the useful life of components exceeds
the satellite mission time of 10 years and only random failures with constant
failure rate (failures per 10' hrs, FITS) occur. A switch junction is defined as failed
whenever it remains in on or off conditions and its state can no longer be altered.
These failures may occur because of failures in active devices, switch driver and
control electronics, and/or in any of the interconnections. The T-switch has been

assigned a path failure rate rather than a switch failure rate since, if the T-switch is
stuck in one position, full interconnectivity can still be provided.

The preceding equations were used to compute reliability for various switch
junction failure rate assignments and fixed failure rate per microwave connecting
path of the electromechanical switches (10 FITS). The resulting reliability
characteristics plotted in Figure B-2 show that the plot for 10 X 6 MsM with ten-
for-six ring redundancy remains relatively flat as the switch junction failure rate is
increased. The ten-for-six ring redundancy configuration is considered to be
superior to all other configurations, and contains fewer electronic switches (60)
than the 12 X 6 MsM that displays the closest reliability characteristics.

These results are illustrated for rectangular MsM configurations, but may be
generalized to square (M X configurations by using double redundancy rings
in the input and output ports of the MSM.
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RF tests on the Etam Standard C antenna

R. PRICE

(Manuscript received October 16, 1981)

Abstract

Radiometric measurements on the Etam Standard C antenna are described in
this paper. Gain-to-noise temperature ratio (G/T), receive and transmit gain,
noise temperature, return loss, and port-to-port isolation were measured, and
communication and tracking patterns taken.

Because of the very low spectral flux densities in the 14/11-GHz bands, it was
necessary to use radiometric methods for measuring G/T, gain, and temperature.
Although in Standard A antennas Y-factors range between 3 and 6 dB, in Standard
C antennas they are only 0.4-0.5dB. Thus, errors and uncertainties, which are
negligible in a 6/4-GHz test, become major at 14/11 GHz. This difficulty was

overcome at Etam by applying a refinement in switched radiometry, which
resulted in the collection of a large amount of useful data.

Introduction

RF characteristics of the new Etam Standard C antenna were measured
by the radio star Y-factor method. This method, generally used with Stan-
dard A antennas, presents difficulties at 14 and 11 GHz because of the
much lower levels of spectral flux densities available. These difficulties
were overcome at Etam by means of a self-balancing gain modulation
radiometer.

G/T, receive and transmit gains, low noise amplifier (LNA), system, and

69
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antenna noise temperatures were measured with the radiometer . Voltage
standing-wave ratio (vswR) and port-to -port isolation were measured by
standard swept frequency methods; and , finally, receive and transmit
patterns were taken , first with the aid of SIRIO, the Italian experimental
satellite, and later with an orbiting INTELSAT v and a cooperating ground
station.

The Etam-3 antenna

Etam-3 (Figure 1), the first U .S. INTELSAT antenna to operate in the 14/
11-GHz frequency bands, is an 18-m linearly polarized, shaped Cas-
segrain with a corrugated horn beam wave-guide feed , mounted on an
elevation-over-azimuth, wheel -and-track pedestal . Autotracking is by
monopulse . An identical antenna to provide spatial diversity is under con-
struction at Lenox, West Virginia, some 34 km from Etam.

GIT and receive gain

In the radio star method for measuring G/T, the antenna is pointed at a
noise-emitting celestial source having a known flux density, and then
moved off the source in azimuth towards the cold sky. The ratio of noise
power received under the two conditions is called the Y-factor, from
which G/T may be computed directly using the expression [1]:

GIT = SAK (Y - 1) k,k,k, (1)

where Y = ratio of noise power received when the antenna is directed
towards the radio star to the noise power received when the
antenna is directed towards the cold sky

K = Boltzmann's constant = 1.38 X 10-'3 J/K
-228.6 dBW/K

S = the star flux density in W/m2/Hz
k, = a correction for atmospheric attenuation, and a function of

elevation angle
k2 = a correction for the angular extent of the star. This correction

accounts for the fact that radio stars are not point sources. It
is a rather complicated function of antenna beamwidth and
star brightness distribution, and is significant for narrow
antenna beamwidths

k, = the correction for radio star polarized flux (not needed for
Cassiopeia A).
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Figure 1. The Etanr-3 Antenna

At 4 GHz, the Y-factor method has proved convenient for measuring
G/T, and is almost universally used with Standard A antennas. The
method can also be applied at 11 GHz, but satisfactory accuracy becomes
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more difficult to achieve, primarily because of the low spectral flux
densities.

In May 1981, Cassiopeia A had a flux density at 3.95 GHz of -230.1
dB W/m2/Hz.* This level yields Y-factors for Standard A antennas
ranging afrom 3 to 6 dB. In this range, a measurement uncertainty of±0.I
dB translates to an uncertainty in G/T and gain of ±0.1 dB, an amount
that is seldom critical.

At 11 GHz in May 1981 the flux density of Cassiopeia A was -233.4
dBW/m2/Hz, yielding Y-factors for Standard C antennas of the order of
0.4-0.5 dB. Measured G/T and gain now become highly sensitive to
short-term atmospheric and LNA gain fluctuations, and measurement un-
certainties of ±0.1 dB in Y-factor translate to uncertainties in G/T and
gain of ±1.0 dB.

The Etam radiometer

Theory of operation

Etam's requirement for high sensitivity in an environment of random
gain fluctuations was met by a switched self-balancing gain modulation
radiometer.

In the standard Dicke-type radiometer, the receiver input is switched
between a reference termination and the unknown under test. The output
of the receiving system is a DC level related to the difference in tempera-
tures under the two switching conditions:

Vfln^ = G (T,ercrenec + TLNA) - G (Tunknown + TLNA) . (2)

In the gain modulation mode, the input to a receiving system is also
switched between a reference termination and the unknown under test,
but the output is a DC level proportional not to the difference but to the
ratio of temperatures under the two switching states:

G (T nknnwn + TLNA) = Toflknowfl + TLNA = lr (3)
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As can be seen, system gain G, which can fluctuate, is eliminated as a
variable, thereby improving sensitivity. This concept has been described
in the literature and used in various applications since the early 1960's [21,
but the measurements at Etam were, to the author's knowledge, the first
applications of the method to an INTELSAT ground station. Equation (3)
also defines a measurable Y-factor from which the unknown temperature
(for Etam, the antenna noise temperature) can be calculated:

flee + TLNA(Y - 1) . (4)

Radiometer circuitry in the gain modulation mode balances a voltage
derived from a known reference temperature, V,, with a voltage, VA,
derived from the temperature source under test (see Figure 2). This null
balancing function was accomplished at Etam at IF and audio by the AIL
Model 800 Universal Radiometer. The two voltages enter a comparator,
whose output is an error signal that drives a 2" step binary attenuator
operating on the reference voltage. Control circuitry continually adjusts
the binary attenuator for zero error signal at the output of the comparator,
in which condition the reference- and antenna-derived voltages are equal.
From the attenuator readout, front panel settings, and certain internal
calibrations, it is then possible to calculate the temperature (or Y-factor)
of the device under test.

Measurement resolution is the range of measurement divided by the
21" - 1 (1023) steps of the binary attenuator. The narrower the measure-
ment range, which is adjustable from T,s,,-T,ow, the greater the resolution
(see Figure 3). The initial setting is based on an a priori estimate of the
temperatures to be measured. The ultimate sensitivity of the radiometer,
regardless of the range, can never exceed the limitation set by the overall
system noise temperature, and the pre- and post-detection bandwidths
[31:

AT =
"" 11B-T

(5)

where AT,,,, = smallest detectable temperature differential

*Based on a spectral index of -0.79 and a secular decrease perannum of 1. 1 per- T,„ = system noise temperature
cent applied to a base flux of 1072 X 10-26W/m2/I lz at 3.95 GHz onJanuary 1, 1968 B = IF noise bandwidth
(Interim Communications Satellite Consortium pescl T-23-16E, Appendix B). T = radiometer integration time constant.
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RADIOMETER RESOLUTION =
T MAX - TMIN

1023

Figure 3. Gain Modulation Radiometer Range and Resolution

Radiometer configuration

The Etam radiometer consists of two major subsystems: the IF sub-
system, which performs the null balancing function, and the RF/down-
converter subsystem. The IF subsystem consists of the AIL Model 800
radiometer, which accepts and processes the down-converted signals
derived from RF sources of any frequency, and provides the driving wave-
form for the Dicke switch.

The RF/down-converter subsystem translates the received RF noise
power from the antenna under test to the IF range for further processing
by the AIL unit. The subsystem is made up of the following components:

a. separate latching circulator (Dicke) switches for the 11- and 14-
GHz bands that switch the LNA between the antenna and the
reference load at an audio rate;

b. a 14-GHz parametric amplifier with a 3-dB noise figure and a
13.6-dB nominal gain;

c. a SpaceKom down-converter with a 55-dB conversion gain and
a 4.5-dB noise figure;
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d. power supplies and interconnections; and
e. a GASFET amplifier with 60-dB gain over both the transmit

and receive bands, and a 4-dB noise figure.
To obtain valid measurement data with this system, careful attention

must be paid to all power and voltage levels. Meeting the interface
requirements of the Model 800 is critical . The input IF power level must
be maintained within a range of -65 to -50 dBm because an excessively
high level causes unstable readouts , and a level that is too low results in
loss of sensitivity . The optimum level is the minimum IF input that yields
adequate sensitivity.

The automatic gain control regulates the voltage level observed by the
square law detector , which monitors the switched power from the refer-
ence termination and the antenna . This level must be maintained
between 1.4-1.6 V. At the same time the gain of the Dc amplifier that
follows the detector must be appropriately set, and both levels must be
readjusted whenever there is any change in local oscillator (Lo) power
input to the down -converter . Best results at 14 GHz were obtained with
an LO input power of 1.5 mW.

Receive band measurements

The test setup for these measurements is shown in Figure 4. The
station's rather than the radiometer's down-converter was used for the
receive band tests. Two measurements are required to obtain a G/T Y-
factor: first, a measurement of the sky + LNA temperature vs the reference
+ LNA temperature, and second a sky + star + LNA temperature vs the
reference + LNA temperature. Each yields a Y-factor, and the two are com-
bined as shown in equations (6), (7), and (8), to obtain the resulting Yr;,T.
G/T is then calculated from equation (1).

YOIT -

where T,

Ty"° + T'°r with antenna pointed at star (6)
Teference + TLNA

T111em with antenna pointed off star (7)
TTeference + INA

Y1fer + T,„r
Ysky Tsystcm

(8)

T REF
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Figure 4. Test Setup for GIT and System Noise Temperature

Figure 5 plots G/T as measured with Cassiopeia A and Taurus A.
Taurus A measurements were made at 0° and 90° polarization angles and
averaged to account for the polarized component of star flux. Over the
measured band, the G/T as measured with the two stars differed on
average by less than 0.5 dB and was within 0.25 dB of a mean value. This
difference was largely due to uncertainty regarding the precise values of
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Figure 6. Ezam-3 Antenna Receive and Transmit Gain

the spectral flux densities of the two stars. It was possible to reduce
slightly the spread between the two results by using a modified spectral
index for Taurus A provided by Sato and Ogawa.*

Antenna gain is obtained by adding to the G/T the system noise
temperature in dB measured at the same elevation angle. Gain is plotted
in Figure 6.

the output feed orthomode transducer (OMT) and the LNA as shown in
Figure 7.

TELESPAZIO then provided a calibrated down-link e.i.r.p. From the
transmitted e.i.r.p., space loss, and receive power, the antenna gain was
calculated using

G = P, - P, + L + k, + P (9)
Receive gain measured with SIRIO

An additional measurement of antenna receive gain was made at
11.597 GHz using a calibrated beacon from s1R10. This permitted com-
parison of a radio star result with that obtained by an alternative method.

The main beam axis of the spacecraft antenna was repointed from
Fucino towards Etam , and an absolute receive power measurement was
then made by injecting a calibrated signal into a coupler located between

*Based on work at KDD, Messrs. Sato and Ogawa suggested using a spectral
index of -0.287 rather than -0.263 for Taurus A. The lower value given by
Kreutel and Pacholder (Reference I and icse/T-23-16E) has been generally used,

where G = antenna gain
P, = power received at antenna output OMT flange
P, = spacecraft transmit e.i.r.p. in the direction of the earth

station
L = path loss
k, = correction for atmospheric attenuation (0 is the elevation

look angle to the satellite)
p = polarization loss, taken as 3 dB between circularly polarized

spacecraft and linearly polarized earth station.
The gain obtained by this method was 64.25 dB as compared with 64.5

dB with the radio star method. This close match promoted confidence in
the radiometric results.
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Figure 7. Setup for Receive Gain Measurement with S/RIO Satellite

Antenna noise temperature

Antenna noise profiles, plotted in Figure 8, were obtained by subtract-
ing the LNA temperature from the system temperatures measured at a set
of elevation angles. System temperatures were calculated from the radio-
metric data using equations (10) and (12). LNA temperatures were
measured with the well-known hot and cold load Y-factor method [2]
using the radiometer and a Maury microwave liquid nitrogen termina-

lion. The cold load temperature was corrected with equations (11) and
(12) for the difference between ambient temperatures and barometric
pressures obtained at Etam during the tests and those obtained atthe site

and time of initial calibration.

( °II It I°

+ TL\A = Y,k,,(T°r + TENA) (10)

T°m = T' + 0.01078 P + 0.0187 T° + 0.00122 Tmb (11)

where T' = factory calibration temperature
P = difference between barometric pressure at test site and at

site of original calibration = 8.604 mm
T° = temperature of mounting plate = 31.4°C

Tmb = ambient temperature = 18.5°C

1 n
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The LNA temperature can be computed from

YTnm - Tema
TLNA - I Y (12)

The temperature contribution, calculated by equation (13), ofan 11-in.
WR 75 waveguide, which included a bend between the Maury load and
the switch, had to be added to the load temperature.

T.old out = TL 'a + (I + 11L) Tmblent (13)

where L = loss factor.
The temperature measurements of the LNA subsystem uncovered an

instability in one of the amplifiers, and all measurements were thereafter
performed with the more stable amplifier.

Transmit gain

The usual method of measuring the transmit gain of earth station
antennas has been by e.i.r.p. matching with a TTC&M antenna; but this
method was not available at Etam because INTELSAT v had not yet been
launched nor was there a calibrated standard. Instead, transmit gain was
measured as in the receive band by radio star. This procedure required a
14-GHz LNA, a device not normally in the complement of earth station
equipment. Fortunately, a developmental model parametric amplifier for
spacecraft use having a gain of 13.5 dB and a noise figure of3 dB was made

available by INTELSAT.
The procedure for measuring transmit gain was identical to that used in

the receive band. G/T and system noise temperature were measured
separately using the radiometer RE down-converter subsystem, and their
product was calculated. The test setup is shown in Figure 4. The relatively
low gain of the 14-GHz parametric amplifier required referring the down-
converter noise temperature to the amplifier input when calculating
system temperature and gain, a step not necessary in the receive band
calculation because of the high (greater than 50 dB) gain of the station
LNA. Transmit band gain results are plotted in Figure 6.

The angular extent correction

The correction for the angular extent of the star is a nonlinear function
of antenna beamwidth, becoming.very large as the beamwidth narrows.
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On Standard A antennas with receive beamwidths of the order of 0.16°,
the correction is approximately 0.25 dB. On Etam-3 with a beamwidth of
about 0.08° the correction, based on the formulation of Baars, Mezger,
and Wendker [4], is upwards of 2.0 dB. This correction, based on a disc
spectral distribution for Cassiopeia A, and a Gaussian distribution with
elliptical symmetry for Taurus, was adopted in icsc/T-23-16E, issued in
1968, and has not been changed since. The Etam data reduction utilized
the more recent results of Sato and Ogawa [5], based on high resolution
contour plots of star brightness distributions. In general, these yielded
smaller corrections than those of Baars, Mezger, and Wendker.

rMIR considerations

The effect of VSWRS on temperature measurement accuracy has been
the subject of numerous papers, some of which are cited in References 6,
7, and 8. In general, a mismatch changes the amount of noise power
delivered to the radiometer from a source, which may be the antenna
under test or a calibrated termination. The amount of change is a function
of the amplitude and phase of the source and load reflection coefficients.
In most cases, including those considered in this paper, the end effect of
mismatches is to reduce the measured Y-factors, resulting in higher
apparent LNA noise temperatures and lower system G/T ratios. There-
fore, from a VSWR standpoint, the results reported in this paper are con-
servative. Since the star rise at I1 GHz is only about 18 K above a 170-K
background and the relevant vswRs are moderately low (in the 1.2-1.3
range), the errors should be quite small. Less than 0.02-dB error in G/T is
estimated.

Radiation patterns

When the initial series of RF tests was performed in November 1980,
the first INTELSAT v spacecraft had not been launched and therefore was
unavailable for RF focusing of the subreflector. Fortunately, SIRIO
with a beacon at 11.597 GHz was visible from Etam and could be used for
this purpose. Figure 9 shows the communication patterns taken with the
aid of SIRIO, and Figure 10 shows the tracking patterns.

By April 1981, when a second series of measurements was performed,
INTELSAT V was available, and a set of wide angle patterns was taken at
10,962.5, 11,690.5, and 14,065 MHz. These are shown in Figures 11
through 16 with the FCC and INTELSAT recommended 32-25 log 0
envelope indicated. The antenna complies with INTELSAT requirements.
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Summary and conclusions

The G/T, gain, and temperature characteristics of the new Etam Stan-
dard C antenna were measured by radio star using gain modulation radi-
ometry. This method proved successful in overcoming the difficulties
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posed by the low spectral flux densities available at 14/11 GHz. A supple-
mentary receive gain measurement with SIRIO verified the radiometric
method. It is concluded that antennas with low V-factors (due to low gain
or low spectral flux density) can be measured by radio star techniques
described in this paper, but great care is needed in the implementation
and execution of measurements.
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Abstract

This paper presents the results of a COMSAT field test of TDMA terminals
equipped for digital speech interpolation (DSI). The test was conducted in the
Pacific Ocean region in 1980 with participation of KDD, Japan, and Cable and
Wireless, Ltd., United Kingdom. Its main purpose was to obtain operational
experience and to evaluate simplified time-division multiple-access (TDMA) net-
work protocols. Constraints encountered in a typical band-limited nonlinear
satellite channel are also discussed.

Testing was conducted among earth stations in Paumalu, Hawaii; Ibaraki,

Japan; and Hong Kong via INTELSAT IV F8, transponder 12. The test program
included link calibration, optimization of the channel bit error rate (BER), TDMA
equipment test, and baseband performance (objective and subjective).

Introduction

A TDMA terminal was developed during 1978 and 1979 as part of
COMSAT Laboratories' TDMA research and development program ; it con-
sisted of a burst modem [1 ], [2], TDMA controller [3], and terrestrial
interface units. Figure 1 shows the field test configuration for the three
terminals, which interfaced with D -3 pulse code modulation (PCM)

93
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Figure 1. Field Test Configuration

channel banks (T-carrier format), DSI/SPEC* [4] with CEPT channel banks,
and a 24-channel transmultiplexer. The program included both sub-
jective and objective testing, and a significant part was devoted to the
establishment of a high-quality link for 60-Mbit/s TDMA in a 36-MHz
transponder.

This paper summarizes the results of the test program by successive
discussion of TDMA modem performance, TDMA equipment tests, and
baseband-to-baseband tests.

The TDMA terminals were operated with a 750-µs frame at a clock rate of
30.016 MHz using quaternary phase-shift keying (QPSK) modulation. The
network protocols are a simplified version of the INTELSAT BG-1-18
specification. The burst preamble consists of 96 symbols for carrier and
bit timing, 15 for unique word, 3 for the station identification code, and 13
(maximum available) for order wire channels [5].

A traffic burst is designated as a reference burst for network frame syn-
chronization. An alternate traffic burst serves as the frame reference if the
primary fails. Burst position and burst length are assignable anywhere in
the frame with one-symbol resolution. An open-loop procedure was used
for initial acquisition, and closed-loop for steady-state synchronization.

Terrestrial interface units were developed for the T-1 carrier
(1.544 Mbit/s) and for the SPEC/DSI operating at 2.048 Mbit/s. The
SPEC/DSI interconnected with CEPT channel banks. The terminal multi-

*The speech predictive encoding communications equipment had been pre-
viously developed by COMSAT Laboratories.

SPEC DSI

SPEC DSI

TRANS-
MULTIPLEXER
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destinational mapping capability allows any group of four channels from
the 24 generated by a D-3 channel bank (T-1 carrier) to be assigned to any
other system D-3 channel bank. Thus, each channel bank can be inter-
connected with up to six other network channel banks [3].

The DSI equipment for this experiment consisted of the SPEC design
previously developed at COMSAT Laboratories. It incorporated the latest
DSI concepts, including a floating threshold voice switch and dynamic
aperture zero-order predictor which virtually eliminates speech clipping [4].

The commercially procured transmultiplexer equipment consisted of
an all-digital implementation employing discrete cosine transform pro-
cessing with transversal tap weighting. Two channel banks interfacing at
60-108 kHz were converted to the standard T-carrier digital format(p-law)
at 1.544 Mbit/s, and vice versa.

Satellite channel model

The satellite channel model is depicted in Figure 2.* Signals are cor-
rupted by additive thermal noise on both the up- and down-links. Inter-
ference can also arise from signals in adjacent satellite transponders (out-
of-band emissions).

Additional signal distortion is produced by earth station transmitters
and the satellite amplifiers operating in their nonlinear regions. These
nonlinearities together with the channel filters cause distortion which
leads to intersymbol interference.

The up-path noise is principally contributed by the satellite receiver
noise and the earth noise as seen by the global coverage receive antenna.
A typical up-path noise temperature is around 1,000 K. The down-path
noise is contributed by the earth station receiver low-noise amplifier
(LNA), loss in the feeder line connecting the feed with the LNA,
earth station antenna sidelobe and backlobe pickup, and galactic radia-
tion. A typical down-path noise temperature is around 50 K at elevation
angles above 10°.

The effects of broadband thermal noise are minimized by filtering the
up-link signal at the satellite and the down-link signal in the earth station
demodulator. Since interference from adjacent channels cannot be
removed by filtering, the system must be engineered to control these
sources of interference. Out-of-band emissions, which cause adjacent
channel interference, are controlled by operating the earth station trans-
mitter in a quasi-linear region, that is, backed off from saturation. Maxi-
mizing satellite transponder usage in terms of carrier power requires

*Courtesy of L. C. Palmer, COMSAT Labs.
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operation near saturation . Signal dispersion can be controlled by overall
link equalization , as discussed later. The principal elements which affect
channel performance are channel filters, the high -power amplifier (HPA),
transponder filters, and the transponder traveling wave tube amplifier
(TWTA).

Channel filters

The channel filter configuration adapted in the present modem is
shown in Figure 3, where the critical items are the transmit and receive
low-pass filters. The wideband transmit and receive bandpass filters are
spectrally transparent to the data; their major functions are the suppres-
sion of spurious emission from the modulator and the reduction of the
wideband noise in the demodulator, respectively.

TRANSMIT

LEE FLAT
PASSBAND

CARRIER

LEE FLAT
PASSBAND

BEE
(TRANSPARENT)

--

RECEIVE

BEE
(TRANSPARENT)

LEE
NYCUISTi

LPF
INYCUISTI

CARRIER AND
CLOCK RECOVERY

Figure 3. Channel Filter Configuration
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The transmit low-pass filter is a dual low-pass, flat passband type with a
bandwidth symbol duration product (BT = 1.1), and the corresponding
receive low-pass filter is a dual low-pass Nyquist type with 40-percent
cosine roll-off, including aperture equalization (x/sin x compensation) [2].

Channel equalization

Two types of equalizers are available for either amplitude or group-
delay equalization. The first is a fixed type which has either flat group
delay and a particular amplitude characteristic, or a flat amplitude
response and a known group-delay characteristic. Fixed equalizers can be
designed to compensate for amplitude or group-delay distortion with
complex shapes; the only disadvantage is that these equalizers are made
as cascaded all-pass sections as shown in Figure 4 and are not generally

LI

C2 C2

( lE

a
0

FREQUENCY

Figure 4. Bridged-T Equalizer

adjustable over a wide range [6]. The second type, a transversal equalizer,
shown in Figure 5, can be adjusted to yield many combinations of
amplitude and group-delay characteristics with more regular behavior in
terms of gain or delay slopes [7],[8].

For nonlinear operation of the satellite TWT, amplitude or delay distor-
tion existing in the up-link cannot be compensated in the down-link.
Appropriate compensation must be introduced in the up-link chain.
Therefore, transversal equalizer placement was planned at the modulator
output for the up-link compensation and at the demodulator input for the
down-link compensation. In addition, a fixed equalizer was planned for
the down-link side to compensate the transponder delay distortion prin-

cipally due to the transponder output multiplexer.
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IF OUTPUT

Figure 5. Transversal Equalizer Block Diagram

Link calculation.

The link parameters were as follows:

Up-Link

Satellite (G/T) at beam peak -13.1 dB/K
Saturation flux density at beam peak

(full gain transponder) -75 dBW/m2
Gain of 1 m' at 6 GHz 37 dB
Transponder usable bandwidth 36 MHz
Transponder input backoff

(assumed for optimum BER performance) 2 dB

Down-Link

Transponder e.i.r.p. at saturation at beam peak 25.8 dBW
Transponder output backoff

(assumed for optimum BER) 0.3 dB

These parameters result in the carrier-to-noise ratio (C/N) calculations
given in Table I for the links involved.

The TDMA system was initially installed at the U.S. earth stations in
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Jamesburg, California, and Paumalu, Hawaii, where verification testing
was performed prior to shipping the terminals to lbaraki and Hong Kong.
During these tests, the phase-shift keying (PSK) spectrum regeneration
characteristics of the satellite transponder and the effect of regeneration
on the adjacent transponder were examined. The resulting excess out-of-
band noise (oBN) falling on the transponder 11 carrier (976 ch FDM/FM
from Jamesburg) was measured by the lbaraki earth station; the resulting

data are shown in Figure 6. Although the PSK spectrum regeneration in
transponder 12 caused about 2-dB signal-to-noise (S/N) degradation on
the Jamesburg FDM/FM carrier when received by lbaraki, the overall S/N

met INTELSAT specifications.
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After verification testing, the TDMA equipment was installed at earth
station facilities in Paumalu, Hawaii, lbaraki, Japan, and Hong Kong.
Each station was calibrated individually, including the following tests:

a. amplitude and delay equalization of the up-chain, the down-
chain, the combined up- and down-chain using a 6/4 GHz station
translator, and the entire satellite loop;

b. examination of the HPA nonlinearity (calibrated attenuator
settings vs HPA output or earth station e.i.r.p.), to generate a satellite
power transfer curve and the link carrier-to-noise ratio;

c. optimization of the satellite loop BER as a function of trans-
ponder input backoff by finer adjustment of the transversal equalizer
in addition to the fixed equalizers used for amplitude and group-
delay equalization;

d. station-to-station tests between lbaraki and Hong Kong;
e. TDMA equipment tests;

J. baseband-to-baseband performance evaluation.

The above tests were performed at each of the accessing earth stations.

TDMA modem performance

The performance of the TDMA modem over the actual links had to be
assessed indirectly for two reasons. First, it was not possible to isolate the
effects of the noise distribution of the up- and down-path. Second, the up-
path noise was compressed by the nonlinearity of the satellite TWT, so that
field measurement of the actual Eo/No was subject to error.

The satellite power transfer curve, which can be determined with rea-
sonable accuracy by measuring received power vs e.i.r.p., was used to
establish the system operating point. The BER was then measured as a
function of input backoff, as shown for the three loopback conditions in
Figure 7. Note that there is approximately a 1.5-dB spread in performance
from one station to another. However, if the prelaunch data and the link
budget for each station are used to calculate Eo/N„ vs operating point, the
modem BER performance vs calculated En/No can be obtained and is
shown in Figure 8. In this case, the spread from one station to another is a
few tenths ofa dB. These differences most likely result from variations in
overall amplitude and group delay from one station to another, while
those shown in Figure 7 result from the different link budgets. Also, the
modem BER performance vs E IN,, relative to back-to-back is degraded by
about 1 dB because of link effects.
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Figure 7. BERs vs Input Backoff at Paumalu, Ibaraki, and Hong Kong
Earth Stations in Loopback Configuration

Figure 9 shows the modem performance vs operating point for station-
to-station tests between Ibaraki and Hong Kong after loopback tests had
been completed. In both cases, performance was considerably worse than
loopback, even though up-path noise should have been constant, and
Iopback results were similar in each case. Further, the performance
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varied considerably for different directions of transmission. It is very
likely that a part of this performance loss is caused by a mismatch in
equalization between each up-link and the corresponding down-link in
the other station. This is illustrated in Figure 10, which compares link
transmission characteristics for several different transmitting/receiving
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station combinations. Other effects contributing to this difference include
day to day changes in link budget, due to weather, earth station tracking,
and satellite motion.
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TDMA equipment tests

The TDMA common equipment [31 is an all-digital unit placed between
compression/expansion memories and the burst modem (PSK). This unit
controls transmit start time, preamble generation, data scrambling, and
modem transmission. It also generates apertures for detecting unique
words, descrambling data, and processing order wire channels. The
common equipment is thus a control unit whose performance is mea-
sured in terms of ease of operation, ability to achieve and maintain syn-
chronization, and interfacing to terrestrial modules. Figure 11 is a block
diagram of the TDMA terminal.

Timing for the terrestrial network is provided by digital frequency
synthesizers. These units generate Ti and CEPT carrier timing that is
synchronous with the transmit and receive TDMA frame rates, respec-
tively. Since all bursts are synchronized to a reference, terrestrial network
timing is also synchronized to the TDMA reference station oscillator. Thus,
the overall network is synchronous.

Synchronization performance was first tested during an early equip-
ment verification test. The link error rate was increased progressively
until the terminal was unable to maintain synchronization. It was found
that synchronization was maintained up to a BER of approximately
10-'. This testing also included offsetting the local station oscillator from
the specified system symbol rate. The limit of this offset under which the
terminal maintained synchronization was also tested. The terminal could
maintain synchronization up to ±9-Hz offset in local symbol clock vs
reference station symbol clock. This limit, which is based on a software
algorithm, provided a range greater than that which will be needed in
future TDMA operation.

The reference and alternate stations were identified during the
terminal initialization procedure by entering their identification codes
from the CRT keyboard. The control procedure continually monitored the
reference station reception. When the reference was not detected for
several frames, the terminal automatically synchronized to a backup or
alternate reference. When the reference reappeared, the terminal again
synchronized to it. The aperture used was 12 symbols; thus, the reference
had to reappear within this window or switchover could not take place.

To test the automatic switchover procedure, the reference station was
taken off the air. The link between the alternate reference and standard
traffic terminal was monitored to detect disturbance to the terrestrial
network. This included continuous BER measurements on the voice band
link, a continuous distortion measurement of a sine wave, and a third-
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party observed conversation to detect glitches or disturbances. There
were no recorded errors or noticeable disturbances under reference
station switchover.

The simplified TDMA system operated as a synchronous network. All
terrestrial timing was derived from the reference station oscillator. Digital
frequency synthesizers generated a 1.544-Mbit/s and 2.048-Mbit/s clock
for the D-3 channel bank and SPEC/DSI system, respectively.

Synchronous network operation was achieved by locking the receive
terrestrial synthesizer to the received reference burst. Transmitterrestrial
timing was generated by frequency synthesizers locked to the transmit
frame. Because of satellite motion, the transmit and receive frames
slipped relative to each other as a result of Doppler effects.

The synchronous network was tested by making end-to-end BER tests
and recording block errors. The operation of the frequency synthesizer
was verified in the laboratory and again in the field. However, because
satellite time was never available for more than a few hours at a time,
long-term testing could not be conducted.

The TDMA terminal is controlled from an operator station with a CRT/
keyboard terminal. The interconnection between the TDMA terminal and
its operator station is an RS232 serial interface. During the field trials, the
operator station was located adjacent to the terminal rack. However, the
RS232 interface allows it to be remotely located.

Baseband-to-baseband performance

A series of measurements was performed to quantify transmission at

analog telephone baseband frequencies. The measurements consisted of
test tone to total noise ratio (TT/N,)* and 9.6-kbit/s data modem BER over
PCM, DSI, and T-Mux, under a variety of system and terminal condi-
tions. In addition, the prediction aperture of the SPEC [9] transmitter and
the attendant TT/N, of the distant receiver were monitored at 30-ms inter-
vals. The test results were obtained by specially designed equipment
referred to as the data acquisition system (DAS). Each earth station was
equipped with a DAS unit, with the Paumalu, Hawaii, installation
operating as a master unit for centralized data collection. Measurements
made at Hong Kong and Ibaraki were coded and formatted for trans-
mission (via a 4.8-kbit/s modem) to Paumalu where they were recorded.

Table 2 shows typical TT/N, measurements recorded at Paumalu upon
receipt of a 0-dBmO 1004-Hz test tone transmitted from either Hong Kong

*This includes noise due to quantizing and bit errors.
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or Ibaraki. The TDMA link BERS were 10-' and 10-5. Similarly, Tables 3
and 4 show base band-to-baseband TT/N, performance measured at
Ibaraki and Hong Kong.

TABLE 2. BASEBAND-TO-BASEBAND PERFORMANCE TT/N,(dB)
MEASURED AT PAUMALU ( TT IS SINUSOID)

INTERFACING DSI TT/N,(dB)
DSI TERRESTRIAL.

TT/N,(dB) PORT LOADING
TDMA VIA TIM GAIN BER = 10-' BER = I0 s (%)

PCM (T-Carrier) - 36.5 34
DSI/SPEC 2.4 41.25* 39.25*
DSI/SPEC 2 41.25* 39.5-
T-Mux - 36.8 35.2

-C-message weighted.

TABLE 3. BASEBAND-TO-BASEBAND PERFORMANCE TT/N, (dB)

MEASURED AT IBARAKI (TT IS SINUSOID)

INTERFACING DSI

TDMA VIA TIM GAIN

PCM (T-Carrier) -
DSf/SPEC 2.0
DSI/SPEC 2.4

T-Mux -

TT/N, (dB) TT/Nt (dB) TT/N, (dB)
BER < 10-7 BER = 10 s BER - 10-'

36
43d
43"
36.4`

42"
41.5

°C-message weighted.

'Occasionally degraded to 37 dB because of link conditions.
`Obtained with 0-dBmO test tone; TT/N, = 26 dB for test tone of -29 dBmO.

TABLE 4. BASEBAND-TO-BASEBAND PERFORMANCE TT/N, (dB)

MEASURED AT HONG KONG (TT IS SINUSOID)

INTERFACING DSI TT/N, (dB) TT/N, (dB) TT/N, (dB)
TDMA wA TIM GAIN BER= Io ' BER c 10-6 BER = 10-5

PCM (T-carrier) -
DSI/SPCC 2.0

DSI/SPEC 2.4
T-Mux -

36.5
43"
43"
37.2"

36.3
42'.b

43

"C-message weighted.

'Occasionally decreased to 37 dB because of link conditions.
'Actively varying to as low as 30 dB because of link conditions.
"Measured at -5 dBmO test tone level; dropped to 32.5 dB for TT= -I5 dBmO, and to

27.3 dB for TT = -26 dBrO.
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T-Mux equipment was located only in Paumalu; however, the 1.544-
Mbit/s bit stream which resulted after digital conversion of two
12-channel FDM groups was of T-carrier format. Therefore, transmission
from Paumalu could be received by D-3 channel equipment at both
lbaraki and Hong Kong.

Typical performance of the SPEC/DSI system is shown in Figure 12. The
lower trace shows the test tone to noise ratio, whereas the upper trace
indicates ensemble speech activity. A negative correlation arises between
these two quantities because higher speech activity forces a larger
predictor aperture, which in turn causes a decrease in TT/N ratio [9].
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The 9.6-kbit/s modem tests were performed with CCITT V.29 com-
patible equipment. Modems were located at each earth station and con-
nected to the terminals via simulated terrestrial access circuits with
injected noise at typical levels. The BERS of the 9.6-kbit/s data were
measured for various TDMA link (BER) conditions.

In general, satisfactory modem performance was not obtained unless
the TDMA link operated at a BER of about 10' or less. The general per-
formance trend is shown by the curve in Figure 13, which is fitted through
scattered points that resulted from measurements. Actual BER values
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TDMA LINK BEH

SIGNAL LEVEL 13 dBmO

Figure 13. 9.6-kbit/s Data BER vs TDMA Link BER

could deviate by a factor of as much as 4 from the curve.
The 9.6-kbit/s error rate was almost two orders of magnitude worse

than the TDMA link error rate. Errors in the modem usually occurred in
spurts of as many as 100 bits. This situation perhaps can be partially
explained by realizing that when a large PCM sample is significantly in
error, a ripple in the reconstructed data modem waveform of several
milliseconds could result. This, in turn, could cause many consecutive
symbols, each representing four bits, to be in error.

Subjective test results for O.S. end

The subjective test consisted of conversations between pairs of talkers
(one member at Paumalu and the other in Hong Kong), undera variety of
connections and conditions. Each pair conducted 12 conversations
brought about by a task that involved mutual agreement on rank ordering
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a set of pictures. After each conversation, the circuit quality was rated by
the subjects as excellent (E = 4), good (G = 3), fair (F = 2), poor (P =1), or
unacceptable (U = 0). The circuit conditions under test were as shown in
Table 5.

TABLE 5. CIRCUIT CONDITIONS FOR SUBJECTIVE TEST

PCM

SPEC/DSI

PCM

SPEC/DSI

PCM

SPEC/DSI

PCM

SPEC/DSI

T-Mux at Paumalu

T-Mux at Paumalu

FDM/FM*
FDM/FM*

*-51 dBmOp

10-4

10 - 1

Nominal

Nominal
3-dB high loss

at each end

3-dB high loss

at each end

Nominal

Nominal
3-dB high loss
at each end

3-dB high loss
at each end

Nominal
3-dB high loss
at each end

Nominal
3-dB high loss

at each end

The 12 circuit conditions were suitably arranged in a Latin Square [10]
experimental design so the effects of the test subject and conversation
stimulus could be separated from that of the circuit condition. Note that
the experiment was "anchored" by including a regular FDM/FM satellite
circuit as one of the test conditions.

The experiment was also designed to estimate contributions to overall
variability from three other possible sources independently: test subject
variability (S), picture set variability (P), and inherent human perception
variability (E). The latter is also termed experimental or residual error.

The results of the analysis for U.S. subjects are shown in the usual
format of an Analysis of Variance Table in Table 6.
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TABLE 6. ANALYSIS OF VARIANCE RESULTS FOR SUBJECTIVE TEST

SOURCE OF

VARIATION

Circuit Condition (C)
Subjects (S)
Picture Sets (P)
Residual Error (E)

SUM OF

SQUARES

DEGREES OF

FREEDOM

MEAN

SQUARE F-RATIO

21.38 I 1 1.94 3.8oa
41.42 I I 3.77 7.39'
2.86 I I 0.26 0.51c

50.87 99 0.51

"Very significant; circuit conditions differed more than by chance alone.

'Highly significant; test subjects showed very different reactions to circuit quality.

`Not significant; picture sets had no influence on test subject response to circuit quality.

A similar analysis was performed on the responses obtained in Hong
Kong, with results similar to those given in Table 6. The mean opinion
scores of U.S. and Hong Kong subjects are provided in Table 7. The effect
of high access circuit loss was a noticeable factor for the Hong Kong sub-
jects, who generally rated the quality lower because of it.

TABLE 7. MEAN OPINION SCORES (MAX = 4, MIN = 0)

OBTAINED FROM SUBJECTIVE TEST

EARTH PCM AT DSI AT PCM AT DSI AT T-Mux AT
STATION BER 10 -6 BER 10 -6 BER 10 - 4 BER 10 - 4 BER 10-6 FDM/FM

Nominal Circuit Loss
U.S. 3.42 3.67 2.75 3.17 3.33 3.42
ILK. 3.40 3.17 2.92 3.08 2.92 2.75

6-dB High Circuit Loss
U.S. 3.67 3.58 2.83 3.17 3.42 3.42
H.K. 2.67 2.75 3.00 2.83 2.92 2.58

System summary

Link calibration tests

Link equalization and maintenance of bit error stability were con-
sidered the most difficult items in the overall link calibration test pro-
gram. Table 8 gives the best BER results and the maximum system C/N
measured (over 36-MHz bandwidth) during the test programs.

TDNIA test summary

The architectural concepts incorporated into the TDMA terminal
design were the use of a computer-type bus structure for interconnecting
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TABLE 8. BEST BER RESULTS AND MAXIMUM C/N

B Es I BER
EARTH STATION

(RECEIVING)

TLSr

CONFIGURATION

(CONTINUOUS

MODE)

Paumalu Satellite Better than
Loopback I X 10-s

Ibaraki Satellite Better than
Loopback 1.5 X 10-g

Ibaraki Hong Kong Better than
Transmitting 1.5 X 10-s

Hong Kong Satellite Better than
Loopback 1.2 X 10-'

Hong Kong Ibaraki Better than
Transmitting 9 X 10/

MEASURED COMPUTED

20.5 20.5

22.8* 20.4

20.2 19.8

- -

*Suspect up-path noise compression or difference in saturation flux density as used in
computations and the actual flux density required.

terrestrial interface module (TIM) units with the common equipment, a
microprocessor for terminal operation and network control, and a multi-
plexing/demultiplexing network that could be reconfigured by updating
control memory patterns, and which also allowed independent routing of
PcM multiplexed channels.

The compression/expansion memories located in the TIM units are
viewed from the common equipment as a single random access memory.
The multiplexing network which contains control memories is located in
the common equipment. This network controls the transfer of data from
the compression memory to the modem for transmission, and loads burst
data into the assigned expansion memory. It can be quickly and easily
altered to provide new network interconnections via keyboard entries
from an operator station.

The TDMA terminal mapping procedure which formats and loads the
multiplexer/demultiplexer control memories is used each time the termi-
nal is powered on. During the field test, this procedure was used each day
for several weeks. The mapping capability operated as expected and was
found to be easily understood. The ability to rearrange traffic by simple
operator commands demonstrated the flexibility ofTDMA. The burst time
plan can be prepared off-line well in advance of frame format and traffic
changes; or via the addition of software and signaling channels, burst-
time plans can be dynamically implemented. The single-carrier-per-
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transponder advantage of TDMA allows this rapid traffic rearrangement.
During laboratory and field testing, these concepts in terminal archi-

tecture were continually tested. They allowed extreme ease in network
operation, and earth station personnel had no difficulty in grasping the
TDMA concept or in operating the terminals.

Observation on baseband -to-baseband tests

The analysis of the results from the subjective test was complicated by
malfunctioning T-Mux equipment toward the end of the experiment.
This resulted in 11 conversations which eitherwere not conducted via the
T-Mux, or occurred under dubious conditions. The resultant 11 data
points (i.e., ratings) were omitted and treated as "missing observations"
in the analysis; that is, ratings were estimated by minimizing the mean
square experimental error variance. However, the following general
observations can be made:

a. At the TDMA BER Of 10-s, PCM, DSI, T-Mux, and FDM/FM Circuits
performed very well and equally well statistically for U.S. subjects;
Hong Kong subjects rated conventional FM/FDM circuits signifi-
cantly lower.

b. At the TDMA BER of 10-4, a marked drop in quality was experi-
enced in both PcM and DSI (T-Mux was not tested at that BER).
However, DsI performed significantly better than PCM, most likely
due to the action of the voice switch ofDsl which prevents the listener
from hearing distortion caused by bit errors during the silent inter-
vals of speech.

c. Access circuit loss did not influence the opinion of the test sub-
jects in the United States, but Hong Kong subjects rated the calls
lower when high access circuit loss existed.

Conclusions

The field test reported in this paper demonstrated the feasibility of
TDMA in an operational satellite network. In particular, the TDMA
equipment featured architectural concepts incorporating a computer-
type bus structure for interconnecting terrestrial interface units with
common equipment; microprocessors for terminal operation and net-
work control; and a multiplexing/demultiplexing network that could be
reconfigured by updating control memory patterns and allowing indepen-
dent routing of PCM multiplexed channels.

The TDMA terminal design was based on the INTELSAT BG-1-18
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Specification. It operated with a 750-ps frame period at a rate of 60.032
Mbit/s. The network protocols were simplified to reduce terminal ex-
penses. Operation of the equipment by earth station technicians was
easily understood and mapping procedures for rerouting traffic were exe-
cuted by simple entry on a keyboard terminal, demonstrating the flexi-

bility Of TDMA.
Link equalization for achieving best BER performance and main-

tenance of this BER over a prolonged period was given special attention.

The overall technical performance was excellent. In subjective terms,
PCM/TDMA transmission provided equal or better quality than that of
FDM/FM/FDMA transmissions of current satellite systems.
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Abstract

This study is intended to develop and evaluate network approximations
for the reciprocal sin (x)/(x) frequency response utilized in digital data transmis-
sion. Two simple transfer functions emerge from the analysis, one with
complex poles and the other with both complex poles and zeros. Their
performance is evaluated in terms of a computer simulated bit error rate (Bea)
with raised cosine data filtering for roll-off rates of 10, 50, and 100 percent. The

effects ofgroup delay equalization are included. Results indicate that both an im-
provement in error performance and operation at the Nyquist rate are feasible
with reciprocal sine compensation. The tradeoff between the amount of enhance-
ment and degree of complexity varies depending on the sharpness of the data

filtering. If compensation is built into the data filtering, it is possible to obtain
near optimum performance with little or no increase in network complexity.

Introduction

The objective of this investigation is to present a technique for realizing
filters that approximate a reciprocal sin (x)/(x) or sine' frequency
response. In digital communications systems, this response is widely used
in conjunction with Nyquist filtering so that data may be transmitted with
minimal intersymbol interference [1], [2].
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The background section of this paper presents a simple model of a data
communications link which demonstrates the need to match the source,
whose output is an arbitrary digital data sequence, to a band-limiting
Nyquist channel filter, whose characteristics are defined for an impulsive
input. The basic properties of the Nyquist transfer function, which give
rise to data transmission without intersymbol interference, are outlined.
The reciprocal sine matching characteristic is then defined in terms of its
magnitude and group delay responses.

The solution is carried out by expansion of the sine function as a power
series in frequency. A hierarchy of network transfer functions is similarly
expanded, and their coefficients equated; a pole-zero approximation for
the sine' function ensues. In particular, a generalized second-order
transfer function in numerator and denominator was selected as the
highest-order solution to be evaluated. From a network point of view, this
corresponds to two poles and two zeros. As the results unfolded, other
degenerate cases appeared to be of interest, namely, the complex-pole
and the single pole-zero solutions.

The relative merit of this technique was evaluated by means of BER
performance. Degradation due to the sine approximation was isolated
using ideal computer-simulated square-root Nyquist data filters and
detection processing. The effect of varying the roll-off rate of the filtering
was examined by employing 10-, 50-, and 100-percent raised cosine
responses. To be equitable, BER comparisons were made with respect to
an unmatched Nyquist raised cosine channel, whereby the link half
amplitude bandwidth-symbol time (BT) product was increased to opti-
mize the error rate. Initially, only sine' amplitude approximations were
evaluated. Later, delay equalization was analyzed and found to sub-
stantially influence the results.

Active network realizations are presented to demonstrate how the
approximation poles and zeros might be transformed into actual network
structures. These include implementations for complex pole, complex
pole-zero, and second-order group delay equalization topologies.

An added section explores the utility of square-root sine' compen-
sation at both ends of the link. Solutions for poles and zeros, BER, and
network realizations have been included as before. The result is that
about 0.1 dB in performance may be sacrificed to allow for identical
filtering in both modulator and demodulator.

In summary, it was found that single pole-zero sine' matching was not
suitable for operation at the Nyquist rate. The complex pole-zero and
delay-equalized complex pole solutions had virtually identical perfor-
mances over the entire range of roll-off rates. Also for rates between 10
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and 50 percent, these solutions were capable of performing with 0.1 dB of
ideal. To achieve similar performance for roll-off rates approaching 100
percent, the delay-equalized complex pole-zero solution was required.
Thus, the softer the filter, the more extensive the approximation
required.

Background

A simplified data transmission system, as depicted in Figure 1, con-
sists of a data source, which produces information bits at a rate R in the

DATA
SOURCE SING NYQUIST 4 NYQUIST DATA

DETECTOR

n
NOISE

Figure 1. Data Transmission System

form of digital pulses of duration T= 11R. Also included are transmit and
receive filtering, a linear additive noise channel, and a data detector. The
filter characteristics and apportionment are explained as follows. If the
channel is band limited, individual pulses will smear and interfere with
adjacent symbols. Nyquist, however, has set forth criteria on the channel
transmittance function that permit operation without intersymbol inter-
ference [3]. These are illustrated in Figure 2. Basically, any frequency
response whose magnitude has odd symmetry about the half-amplitude

MAGNITUDE

Figure 2. Nyquist Magnitude and Phase Criteria

point (where frequency equals symbol rate divided by 2), and whose
phase is linear, satisfies the Nyquist criteria. In addition, from optimum
detection theory it is well-known that with a linear additive white
Gaussian noise channel, the receive filter should be matched to the
transmit.
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Since Nyquist signals exhibit even time symmetry, a delayed time-
reversed version of the transmit impulse response is still the transmit
impulse response. Thus, the optimal way to subdivide the Nyquist
characteristic is by imparting its square root to both transmitter and
receiver. Moreover, the link would be well-defined if the source delivered
impulses. Instead, an incoming data pulse of width Thas a spectrum given

by

SO sin (itJl) = sine (mJT) (1)

whereas the impulse spectrum is flat . Consequently, an additional
filtering operation is necessary to equalize or whiten the spectrum of

the source . The characteristic which is required, the reciprocal of

sin (7M / (7/T) , sinc 'Js shown in Figure 3. Note that its group delay is
exactly equal to zero over each lobe, and impulsive at the nodal points.

Figure 3. Sine ' Magnitude and Group Delay

This is due to abrupt 180° phase transitions at the zero crossings of the
sinc function. Clearly, it would be impossible to realize this function
exactly. A reasonable spectral approximation for the amplitude response,
however, is conceivable. The group delay should automatically be com-
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pensated to some extent because of its one-to-one relationship with
amplitude in minimum phase networks.

Solution method

A power series approximation technique was selected because of the
relative ease with which the trigonometric sine function may be char-
acterized. Likewise, a candidate network transfer function will be
expanded as a power series in frequency. In this manner, like coefficients
can be equated, and the poles and zeros of the approximation may be
determined. Inherent to this particular approach is that, for a monotonic
function with restricted complexity, the matching will be virtually perfect
at low frequencies and gradually diverge as the range is increased. This is
in contrast to a minimum mean square error technique which generally
has a uniform equiripple error over the limits of interest.

How far along the frequency axis must the sinc function be approxi-
mated? The tendency is to assume that just beyond the Nyquist band-
width, B = R/2 might be sufficient. However, the ultimate system per-
formance indicator, EER, will subsequently be used to make this deter-
mination.

Power series expansion

For convenience, the solution will be carried out for the original
function sinc (rcfT) . Since the magnitude squared characteristic is more
conducive to power series manipulation, the expansion yields

G(w) 2(w/R)2 + 61 (w/R)° - 81 (co/R)6 + . (2)

The next step is to choose a network whose transfer function will
approximate the power series. Clearly, the higher the order the better the
match will be. As the order increases, however, so does the complexity of
the solution. A reasonable place to begin is with a generalized second-
order transfer function in numerator and denominator. In this manner,
the first five coefficients in equation (2) may be equated. Lower order

degenerate cases can then easily be formed by setting appropriate terms
to zero.

Generalized second -order network solution

In terms of time constants and damping ratios, the transfer function in
Laplace notation is
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7 + v(2z=T) ± S2(T)
H(s) 1 + s(2Zot') + S2(I2)

(3)

Substituting variables (s = j(o) and taking the magnitude squared of

the reciprocal gives

i2 1 + ao2 + azw4

^T(o - I + bog + b2o42

a, (24,1,)2 - 2rP

a2 = TP

b, _ (2Zzt)2 - 2T2
bz = T4 (4)
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These values can be converted into the second-order network parameters.
It is evident that a2 and b2 must be positive, but a, and b, may be less than
zero.

f
27tT 2>t 4

b = 1.25401R , Hz
z

Ip 2nto 271 4 az = 0.91876R , Hz

(7a)

(7b)

Z 1+2b, (f)2=0.94761
(7c)

1 +
Zo=r

2a,
A power series is obtained by dividing out equation (4). Equating these

coefficients with those from expression (2) yields four independent

equations:

a, - b,
-2 A_

4!R2

2 A
b, K, - 6,R4

K,

K,

b,K2 = giRb - K

2 A

b1K3 = 10!R8 - K4

2

They can also be expressed in pole-zero form as

(7d)

(5a) complex zero : -(Z, ± j 1 - Zj wz
- (7.4664 ± 12.5169) R rad/s

(Sb)
complex pole: -( Zo f j 1 2 - (2) wo

(Sc) -(0.80326 ± 15.7166) R , rad/s .

(5d)

Since each succeeding expression is a linear combination of its previous
counterparts, the solutions are as follows:

b, -

a, _

b2 =

K2K3 - K,K4_ _ 2.5641 X 10 2
K1K3 - Kz R2

5.7692 X 10
K, + b, = R2

2

b,K + K3 2.5946 X 10-' -
K , R4

9.0049 X 10-4
a2 = bz + K2 + b,K, = -R4

(6a)

(6b)

(6c)

(6d)

(8a)

(8b)

The magnitude response of this network is plotted in Figure 4a. It is
interesting to note that the mathematical solution does not coincide with
that anticipated by circuit designers. It is expected that the zero break fre-
quency should precede that of the pole to yield an overall upward swing.
However, the mathematics has accounted for the peaking by means of a
dominant underdamped complex-pole pair.

From Figure 4a, it is evident that the approximation is virtually exact
out to 0.75R. This amply exceeds the Nyquist half-amplitude point of
0.5R, which was the tentative goal. The corresponding group delay
response is shown in the lower portion of Figure 4b. The upper curve is
group-delay equalized and will be discussed later. Note that the lower
curve has negative delay at the lower frequencies. This corresponds to
increasing phase shift, which is characteristic of networks whose phase
shift from zeros exceeds that from the poles. It can easily be visualized
that in the vicinity of R the curve is approaching the impulse produced at
the first node of the sine function. In addition, the group delay is nearly

(mf)2
= 0.13915



128 COMSAT TECHNICAL REVIEW VOLUME 12 NUMBER 1, SPRING 1982

R/10

r-R

Figure 4a. Complex Pole-Zero Magnitude Approximation

1.00 R/2

Figure 4b. Complex Pole-Zero Group Delay

flat over the Nyquist band. Thus, most of the energy within the main lobe
has been appropriately weighted. However, this energy argument also
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implies that the sharpness of the data filtering affects the range of com-
pensation necessary ; as with softer roll-off rates , the high frequency error
divergence will be more pronounced . This will be evaluated quantita-
tively by BER comparisons in subsequent sections.

Complex pole solution

With the generalized second-order solution, it was evident that the
underdamped pole pair did most of the work. Thus, it would appear
worthwhile to develop the approximation for a single complex-pole pair.
This can be accommodated simply by setting b, and bi to zero in equa-
tions (4), (5a), and (5b). The solution then degenerates to

-2 3333 X 10 -2-8
a,

.
(9a)4!R2 R2

2 2.7778 X 10'
a2

- (9b)
6!R4 R^

1 a ]
A, 2n a2 = 0.69326R , Hz (9c)

Zr = + 22' (I )J = 0.32360 (9d)

complex pole : -(i,, ± I 1 - 4;,)
-(1.4096 ± j4.1215) R , rad /s . (9e)

The magnitude and group delay responses for this case have been plotted
in Figure 5a and the lower part of Figure 5b, respectively.

Single pole-zero solution

For completeness, it is desirable to undertake an approximation for the
most degenerate form possible, a purely real zero. However, a dummy
pole is required to satisfy the stability requirements of computer simu-
lation. Thus, az and

b?
are set to zero in equation (4) so that

(a, - bl) = 2z4.R (IOa)

Then, with a, arbitrarily chosen as b,/120 (w2 = 120w') , the design
equations are
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b 10

119
(lob)

1 1 1
2ni: 2E b, -

2nT„ 2n ai

real zero: -w-

-3.4497R , rad/s

0.549038 , Hz (l0c)

6.01438 , liz (10d)

(10e)

real pole: -w,,
-37.789R , rad/s (10t

RR

Figure 5a. Complex Pole Magnitude Approximation

r•R

Figure 5b. Complex Pole Group Delay

Again, curves for the magnitude and group delay responses are shown in
Figures 6a and 6b.

Performance comparison

At this juncture, it is appropriate to determine the relative merits ofthe
hierarchy of reciprocal sine compensation networks that were developed
in the previous sections. This will be done by means of a BER comparison
from computer simulations of the overall channel [4]. To isolate the
degradation attributed to the sine approximation, ideal Nyquist shapes
have been selected for data filtering with equal apportionment to trans-
mitter and receiver. Also, since earlier it had been stated that the approxi-
mation would be sensitive to roll-off rate, 10-, 50-, and 100-percent raised
cosine responses have been chosen to illustrate the trends that ensue with
progressively sharper filtering.

Uncompensated Nyquist channel

Before the error rate of the sine approximation networks is explored, it
will be informative to see what might be attainable without any such
aperture equalization. To do this, the BT product was expanded
( BT ^_- 0.5 ) until the best error rate was obtained. Curiously enough,
this occurred when BT = (1 + 0.29r)/2 for all three cases ( r = 0.1,
0.5, 1.0 ) . Figure 7 depicts the results. It is evident that little im-
provement is achievable in the 50- to 100-percent roll-off range of the
cosine filters, as they merely suffer 0.2- to 0.3-dB degradation in the
absence of compensation. In contrast, the 10-percent case is considerably
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worse. Moreover, the approximation circuitry must enhance these
characteristics to the extent that their accompanying increase in
complexity is warranted. The particular application will generally
reconcile this question. In many instances, however, the aperture equali-
zation may be aggregated into the data filtering with no additional
circuitry requirements. Eye patterns for the 50- and 100-percent
responses have been included in Figures 8a, 8b, and 8c, respectively.

Reciprocal sine amplitude compensation

Comparisons pertaining to the approximation networks will be made

with operation at the Nyquist rate only, BT = 0.5. This will avoid undue

complications that would ensue if the BT product were optimized for each

possible solution. It is also in keeping with the ultimate goal ofnot having

to search for an optimum BT product if sine compensation is utilized.

Figures 9a, 9b, and 9c illustrate BER performance for the 10-, 50-, and
100-percent raised cosine roll-offfilters, respectively. Each plot displays a
family of curves with progressively improving error rate, corresponding to
the single pole-zero, complex pole, complex pole-zero, and ideal
solutions. For roll-off rates of 10 through 50 percent, complex pole-zero
equalization demonstrates nearly ideal performance, whereas when the
roll-off approaches 100 percent, it yields - 0.1-dB improvement. These
trends appear realistic since the energy distribution of the signal is more
spread out with softer filtering, which consequently should entail more
elaborate compensation with a power series approximation technique.

The eye diagrams corresponding to the acceptable solutions are given in

Figures 10a, l0b, and IOc.

Reciprocal sine amplitude and group delay compensation

With the relatively simple amplitude equalization solutions developed
thus far, the group delay response is not as representative of the Nyquist
criterion as it might be. Therefore, the next logical step is to provide delay
compensation, and determine whether further enhancement is
realizable. This was accomplished by means of a computer program that
perturbs all-pass root locations to smooth the delay variation over some
prescribed frequency interval. The limits were arbitrarily selected to
extend from DC to the Nyquist bandwidth R/2. The composite group
delay responses are given in the upper portions of Figures 4b, 5b, and 6b.
Root locations for the delay compensation are listed in Table 1. BER
curves for the 10-, 50-, and 100-percent cases are depicted in Figures 11 a,
llb, and 11c, respectively.
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Figure 8. Uncompensated Eye Patterns
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Figure 10. Sine-' Amplitude Compensated Eye Patterns
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50% Raised Cosine, BT = 0.5
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TABLE 1. ALL-PASS GROUP DELAY EQUALIZER ROOTS

SING APPROXIMATION LEFT H ALF-PLANE POLE LOCATIONS

Real Zero -(4.6631 +J0.0) R, rad/s
Complex Pole -(2.5731 + jl.6396) R rad/s
Complex Pole-Zero -(4.4937 +12.3200) R , rad/s

For 10- through 50-percent roll-off rates, the complex pole and complex
pole-zero solutions yielded virtually identical error rate performances
( A Ea / N, < 0.03 dB) . This, coupled with the solution's proximity
to the ideal BER curve (G 0.1 dB ) , indicates that the complex pole
with delay equalization is adequate. For 100-percent roll-off, however, the
complex pole-zero network affords the best results. Again, eye patterns
for the acceptable solutions are given in Figures 12a, 12b, and 12c.

In summary, delay compensation has resulted in significant improve-
ment over the entire range of roll-off rates. Also, in many situations the
accompanying increase in network complexity may be eliminated if the
delay equalization is combined with the circuitry already required for the
data filters.

Active network realizations

Complex pole

The lowest order transfer function of interest for amplitude compen-
sation is that of the complex pole. It may be realized with a basic Sallen
and Key structure as depicted in Figure 13a [5]. Its transfer function in
terms of the R and C elements is

When equation (11) is compared with equation (3) it is clear that two of
the values may be solved for as follows:

H(s) = I
1 + s(R, + R2 )C2 + s2R,C,R1C2

(R, + R2) C2 = RPra 0. 14858
(12a)

Figure 1l c. BER, Sine' Amplitude and Group Delay Compensation,
100% Raised Cosine, BT = 0.5

R,C,R2C1 = T2,,
0.052705

R2
(12b)

The other two are determined by selecting a normalizing impedance, and
either a resistance or capacitance ratio (R2/R„ C2/C1).
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Figure 12. Sine ' Amplitude and Group Delay Compensated Eye Patterns
I Figure 13. Active Network Realizations
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Complex pole-zero

The complex pole-zero solution is considerably more complicated. A
network realization consisting of only one active device is shown in Figure
13. Its generalized transfer function in terms of the admittances taken
from Huelsman [6] is

H(s) - Y, (Y4 + YS + Y6) - Y4 (Y1 + Y2 + Y3)
Y6 (Y, + Y2 + Y3) - Y3 (Y4 + Y5 + Y6)

(13)

To assimilate the desired response , the admittances were chosen as

Y, = G, + sC1 ,Y2 = sC2
Y3 = G3 , Y4 = sC4
Y5=SC5 ,Y6=G6+sC6 . (14)

The resultant transfer function in terms of R's and C's is

H(s) = [1 + s [R,C, + R6 (C5 + C6) - G3R,R6C4]
+ s2{R,R6 [C,(C5 + C6) - C2C4] { ]/

[1 + s[R,(C, + C2) + R6C6

- G3RIR6 (C4 + C5) ]
+ s2[R,R6(C, + C2) C6] ] (15)

Equating this with the values from equations (3) through (5) provides four
simultaneous expressions for determining the frequency response:

R,C, + R6(C5 + C6) - G3R,R6C4

0.24054
R

R,R6[Ci (C5 + C6) - C2C4]

2 0.016108
= R2

R,(C, + C2) + R6C6 - G3R,R6(C4 + C5)

0.048209
= 2Zot6 = R

RIR6[ (CI + C2) C6]

T
2
O =

. 0.030008
R2

(16a)

(16b)

(16c)

(16d)

^^T l \T116

Since there are eight unknowns and only four equations , four values must
be assigned . However , arbitrary selections may result in impractical
component values. Consequently, the solution procedure is as follows.
Assume that R „ R6, C„ and C6 are known , and solve for R„ C2, C,, and
C5. The resulting expressions are

aCa+bC,+c=0

where

a =

b= R6 T, +

1
T6
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+ f ^ 1\ (T2
t, T^T6 T,T6 T,

+ T6 2Zat„ 2Z^T_^
T, T6

T)

T2+ 24,T,
T,

with T, = R,C,, 16 = R6C6.

The unknowns are then solved for as

+ T6 - 24jG 1 1G, '/16
3 =

R, 12 1 , + (R6C4 /T,) ('P' 16) - 16

C2=--C
R, 16

C = T^ +C2C4-C,
R6T, C,

(17a)

(17b)

(17c)

(17d)
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To have maximum flexibility for scaling the element values, it is best to
manipulate the coefficients in equation (17a) to give two real roots for C4.

Thus, the parameters of 17a were chosen to force a, c > 0 and b < 0,
with the time constants selected as t, = 1/2rtR and t6 = 1/4rtR. These
parameters result in the following values for the unknowns,

0.10097/R (18a)CQ
R

1.5658 (18b)G,
R

0.21794/R (18c)Cz = R

0.15990/R (18d)C5 =
R6

R, = 2R6 , C, = C6 (18e)

which may be frequency and impedance scaled as desired. It should be
mentioned that this is only one of a variety of possible solutions for

arbitrary choices of R„ R6, C„ and C6.

Group delay equalization

Delay compensation may be accommodated with the structure of
Figure 13c [7]. Its transfer function in terms of the R's and C's is

1 + s[R,(C, + Cz) - RZC, (RlR6)]

H(s) - a 1 + s[R,(C, + C')] + sz[(RICI) (RzCz)]

where

+ sz[(R,CI) (RzCz)] (19)
1 + s[R,(C, + C2)] + sz[(R,C,) (RzCz)]

R,
a R0+ R6
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For the magnitude response to be all -pass it is necessary that

RzC,^I a) = 2R1(C, + C2) (20)

With the root locations from Table 1 defined by (o,. ± jwe), the design
equations are

RI(CI +Cz) = cz
20„
+(0i

(RIC,) (R2C2) _ ( o% + w%.) '

Thus, upon selection of an attenuation factor, a, and a normalizing
impedance, equations (20), (2Ia), and (21 b) may be employed to find the
particular R's and C's required for delay equalization.

Square root reciprocal sine compensation

Although not optimum, it is sometimes practical to impart half of the
sine equalization to both transmitter and receiver, which has the
advantage of allowing for identical filtering at both ends of the data link.
This technique may be desirable for nonlinear channel applications,
where amplitude peaking can result in severe distortion. In lieu of the
results in the previous sections, the analysis for square root compensation
will focus on only one type of realization, the complex pole with group
delay equalization.

Power series expansion

With square-root inverse sine compensation, the magnitude squared of
the filter response must be equated to the first power of the sine function
rather than to its square.

G(w) I2 = 1 - 1 c z+ 1 4_ 1
w 6+3! 2R) 5! (

(0

R) 7! ^2R) ( 22 )

(21 a)

(21b)

The candidate complex pole transfer function is

H(s) = 1
I + s(2Z,,t) + S2(to) (23)
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The reciprocal of its magnitude squared is written as

i G(w) 12 = H(w) = I + w'[2to(24' - 1)] + w°(ta) . (24)
12

P

Equating coefficients yields

2t^,(2Z1 - 1) = 4 3!R2 (25a)

rP

Solving for the second-order network parameters gives

(25b)

1 t„ = R a 16 - 5! - 1.0535R , rad/s (26a)
271f° = 2n

I 1
Z 2 16 3

V

= 0.20872 (26b)1zzRz

The complex pole locations for the sine approximation are

(Z^ ± j 4p2) wa = -(1.3816 ± j6 . 4737) R , rad /s . (27)

Lastly, the poles of the delay equalizer computed from the afore-
mentioned group delay compensation program are

-(5.3027 ± 12.6643) R , rad /s . (28)

Their magnitude and group delay responses have been plotted in Figures
14a and 14b.

Performance comparison

BER curves for the 10-, 50-, and 100-percent roll-off cosine filters with
square root compensation on both ends of the link are illustrated in
Figure 15. Eye diagrams have also been included in Figure 16. As before,
this compensation demonstrates very good performance in the 10- to 50-
percent range; whereas toward 100 percent, a more elaborate approxi-
mation is necessary. However, it is interesting to note that although this
technique is suboptimum from a transmit/receive allocation point of
view, very little degradation in error rate is experienced.
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Figure 14a. Complex Pole Square Root Magnitude Approximation

TA

Figure 14b. Complex Pole Group Delay (Sine I)
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Figure 16. Square Root Sinc ' Eye Patterns
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Network realization

This type of compensation may be accommodated with the network
topologies from Figures 13a and 13c. The design equations for the
amplitude shaping are
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softer data filtering disperses the energy further out in frequency, and
consequently the inverse sine amplitude and delay characteristics must
be emulated over a broader range. Moreover, the approximation
networks appeared most useful over the roll-off range of 10 through 50
percent.

0.063062
29 ) It was also found that im ti th= ( ar+ R2) Cz = 22(R par ng e square root of the reciprocal siner ,,,

R
approximation to both transmitter and receiver resulted in less than 0.1
dB degradation of optimum apportionment. Thus, a small penalty in error

RCRC-r,
_0.0282822 (29b)

rate can allow for identical filtering at both ends of the link. From a
practical standpoint, this could be a very attractive feature. In addition, it
may provide better error rate performance for some nonlinear channel

Similarly, element values for group delay equalization are found by applications.

solving For the future, it appears that performance comparisons of inverse sine

(1 a) compensation imbedded in data filtering would be worthwhile ThR L = 2R,(C, + C) (30a) . e
techniques developed here represent quantitative guidelines on
amplitude and delay compensation and help determine their impact on
system error rate performance.

3011402o .,
RI(C, + C2) _ ^2 + e R
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Conclusions

With the reciprocal sine compensation networks developed in this
study, it is possible to operate at the Nyquist rate (B/R = 0.5) and obtain
nearly ideal error rate performance (degradation <0.1 dB). The transfer
functions utilized are fairly simple, typically second order, and can often
be incorporated into the data filtering without any increase in complexity.
In particular, there were two implementations that rendered superior
error rate over a broad roll-off range (10 to 50 percent): the complex
pole-zero and the group delay equalized complex pole solutions. The
single pole-zero case proved inadequate in the absence of BT product

manipulation.
The largest improvement in BER was attained with the sharper data

filtering. For example, 10-percent cosine roll-off initially had consider-
ably worse error rate than the others, yet it was relatively easy to com-
pensate; the 100 percent cosine had reasonable error rate to begin with
but required more elaborate equalization. This was reconciled because
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A demand-assigned mixed TDMA and
FDMAITDMA system*

R. J. F. FANG

(Manuscript received November 6, 1981)

Abstract

The concept of an effective demand-assigned satellite communications system
is presented. High- and low-data rate TDMA terminals and large and small G/T
earth stations can be employed at network nodes having a wide range of traffic
requirements. With proper time-sharing of the satellite transponder, a mixed
TDMA and FDMA/TDMA transmission mode can minimize terminal costs at nodes
with low traffic requirements and maximizes the transponder throughput. Burst-
rate reduction, centralized control for each subnetwork, and simple open-loop
synchronization methods are employed at nodes with low traffic requirements to
achieve cost reduction. It is shown that networks with nonhomogeneous traffic
requirements can be cost-effectively served with such a system.

Introduction

TDMA digital transmission techniques, which were developed and
demonstrated more than a decade ago [ 1]-[3], have not yet been widely
implemented mainly because of equipment complexity and high cost.

* Portions of this paper were presented at the 1979 National Telecommunica-
tions Conference in Washington, D.C.
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The rapid advances in large-scale integration (LS1) technology during the
past decade, however, have significantly reduced hardware costs. On the
other hand, microwave technology has also advanced, leading to signifi-
cant reductions in the cost of antennas, high-power amplifiers, low-noise
receivers, and converters. Consequently, networking via satellite with
small earth stations located at the customer's premises has become more
cost-effective and attractive, particularly for data communications.

To efficiently use the power and bandwidth of the satellite tran-
sponders, TDMA terminals have traditionally been designed to transmit
and receive bursts at data rates of the order of tens of megabits per second,
or at a symbol rate comparable to the transponder bandwidth. High data
rates require large power amplifiers, large antennas, low-noise amplifiers,
high bit rate burst modems, high-speed compression/expansion buffers,
and high-speed TDMA controllers. All these items are costly.

Since nodal traffic in a network is often nonhomogeneous, earth sta-
tions designed for heavy traffic are too costly to serve nodes with light
traffic. Because the number of light traffic nodes is usually greater than
that of major traffic nodes, use of identical large earth stations for all nodes
in the network may not be very cost-effective. Although the most cost-
effective approach might require the use of different G/T earth stations
and TDMA bit rates for each node, it is more convenient to limit the choice
of G/T ratios and TDMA terminal characteristics to a few carefully selected

values.
This paper considers two sets of values of the G/T ratio and two TDMA

bit rates. In order to avoid duplicate equipment at large traffic nodes,
which must communicate with large as well as small traffic nodes, it may
be desirable to allow mixed bit rate TDMA transmissions over a given
transponder. Traffic between large nodes is carried by high bit rate TDMA
bursts that occupy the entire transponder bandwidth. Traffic between
small nodes, or between small and large nodes, is carried by low bit rate
TDMA bursts which require only a fraction of the transponder bandwidth.

This paper proposes an effective method to provide mixed bit rate
TDMA and FDMA/TDMA transmissions over a given transponder. The bit-
error rate (BER) performance of both the high data rate TDMA trans-
mission and the low data rate FDMA/TDMA transmission is evaluated for a
real satellite transponder configuration including the effects of adjacent
transponder interference. When the high and low data rate time slots are
apportioned according to demand, the proposed system would lead to
high transponder efficiency while it would drastically reduce the cost of
the earth segment equipment. An example is provided to illustrate the
usefulness of this concept.
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System description

It is postulated that a number of subnetworks can access a given satel-
lite transponder at two bit rates, one high and one low. In Figure 1, which
depicts a general network configuration over a satellite transponder,
capital letters indicate earth stations with large G/T values capable of
handling the higher bit rate, and lower case letters indicate earth stations
with small G/T values capable of handling the lower bit rate. RI and R2
represent reference stations that generate frame and subframe reference
bursts at high and low bit rates and broadcast to all (large and small) earth
stations. The two reference stations provide backup for each other, but
only one is the master station at any instant.

LEGEND'. RT R2= REFERENCE STATIONS

CAPITAL LETTERS=LARGE G/T E/S
LOWER CASE LETTERS=SMALL G/T E/S

DOUBLE LINE=HIGH BIT RATE TRANSMISSION
SINGLE LINE=LOW BIT RATE TRANSMISSION

Figure 1. Network Configurations

Nodes A I and BI are the central controlling nodes for the high bit rate
subnetworks (AI, A2, A3, D) and (BI, B2, B3), respectively . In the lower datarate subnetworks (D, dl, d2, ... , di), (A2, A3, al, ... , aM), (Bz bl b2 .. , br),and (C, c1, c2, ... , c„), the nodes D, A2, B3, and C, respectively , will control
each subnetwork. At the subnetwork control nodes D, A2, and B2, both
high and low bit rate transmit and receive equipment must be provided in
addition to the network control apparatus . At node C, however , only lowbit rate (transmit and receive) equipment is needed . In either case, each



160 COMSAT TECHNICAL REVIEW VOLUME 12 NUMBER 1, SPRING 1982

subnetwork controller must generate all necessary control information
for that subnetwork and broadcast this information in the subframe to all
nodes under its control.

Figure 2 illustrates a conceptual burst scheduling and transponder
loading plan. For the first time interval, T, of frame duration T, the tran-
sponder is accessed in the TDMA mode by high bitrate bursts that occupy
the entire transponder bandwidth. For the remaining time interval,
T, = T - T, multiple carriers access the transponder in an FDMA/TDMA

FRAML DURATION I

SLBH RAVE SUBFRAME

DUHAJION is DURATION Ts

Figure 2. Transponder and Frame Loading

mode. Thus, the transponder is frequency-division multiple-accessed;
however, each carrier slot is accessed by multiple lower bit rate TDMA
bursts. Figure 3 shows the frame and burst format. For subnetworks with
moderate traffic, multiple carrier frequency slots may be required, in
which case the central controller of this subnetwork must transmit a con-
trol burst in each subframe in each carrier frequency slot. For simplicity of
controller and modem implementation, it is assumed that each TDMA/
TDMA carrier frequency slot serves no more than one subnetwork.
Although this assumption is obviously not necessary, it may be desirable
from a practical standpoint.
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Figures 4 and 5 are block diagrams of the small and large earth stations,
respectively. For illustrative purposes, G/T values of 25.8 and 30.2 dB/K
have been selected which correspond to antenna diameters of 3.6 and
5.5 m, respectively, at 12 GHz, assuming a noise temperature of 215 Kfor
the LNA subsystem using field-effect transistor amplifiers.

The low bit rate small G/T earth station requires an 11-W power ampli-
fier (UPA). The TDMA terminal consists of a QPSK modem, a rate one-half
forward error correction (FEC) codec, a network and satellite access
controller, a compression buffer, an expansion buffer, and a terrestrial
port interface unit which performs the necessary time-division and/or sta-
tistical multiplexing and protocol conversion. In order to minimize the
cost of the terrestrial interface unit, it is assumed that the port speeds at
the input would not exceed 56 kbit/s. Ports with speeds higher than
56 kbit/s, but not exceeding 1.544 Mbit/s, could be made available. In
this case, however, no protocol conversion would be required for these
ports. Their outputs are fed directly into the compression buffer. It is
assumed that the user equipment can handle the necessary protocol con-
trol and has the required buffer storage for data rates higher than
56 kbit/s, but not exceeding 1.544 Mbit/s, including video conferencing
capability.

An FEC code is employed to trade off bandwidth for power. With a rate p
FEC code, the operating bit rate of the burst modem must be increased
from R to R/p bit/s to achieve the same information bit rate of R bit/s. In
Figure 4, it is assumed that p = 1/2, for illustrative purposes. Thus, atan
information rate R = 1.544 Mbit/s, the rate 1 /2 FEC codec output bit rate
as well as the burst modem bit rate must be 3.088 Mbit/s, which is well
within the capability of medium-scale integration (MSI) transistor-

transistor logic (TTL) technology.
The network and access controller of the subnetwork TDMA terminal

contains a small amount of microprocessor-based digital hardware plus
memory storage. An open-loop burst synchronization technique and a
centralized network control method are employed, as shown in Figure 6.
Initially, all low bit rate terminals in the subnetwork are prohibited from
transmitting. The central controller must obtain the subframe reference
from the main reference station RI or R2. The relative time delays
between the subframe reference burst and the central controller's burst,
as well as between the bursts from other terminals in the subnetwork, are
precomputed at the main reference station, R1 (or R2), with updated
satellite parameters. The controller then sends a control burst for the sub-
network under its control. This control burst contains the relative delay
parameters and an initial network map generated by the controller.
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Figure 6. Network Control Algorithm for Low Bit Rate Subnetworks
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Each low bit rate TDMA terminal in the subnetwork uses an open-loop
method for acquiring burst synchronization. A burst is sent to the proper
time window according to the initial network map obtained from the
subnetwork central controller via the control burst. A TDMA terminal in
the subnetwork, which might fail to acquire burst synchronization within
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a prespecified time, would be inhibited from transmitting into that time
slot under the command from the subnetwork central controller until a
later time and within a time slot determined by the subnetwork central
controller.

The status of the buffers at each TDMA terminal is periodically reported
to the subnetwork central controller for every K subframe. This controller
generates and transmits a new network map to all TDMA terminals in the
subnetwork for every L subframe with proper error protection. Positive
acknowledgment information is transmitted back to the controller from
each TDMA terminal. The controller retransmits the new network map
within a prespecified maximum time to the TDMA terminal from which no
positive acknowledgment has been received until all positive acknowl-
edgments are received. Therefore, upon command from the subnetwork
central controller, all TDMA terminals can be switched over to the new
network map at a time determined by the controller.

A particular time slot in the subframe is reserved for sending a reserva-
tion request and the buffer status to the central controller. In each
subframe, however, only one TDMA terminal can access this time slot.
The order is cyclic or can be preassigned by the central controller, in
which case it must be broadcast to all TDMA terminals in the subnetwork.
With K active terminals in the subnetwork, it will take K subframes for
any terminal to access this time slot again. Since each frame is numbered
(periodically) and since the subnetwork central controller knows exactly
which burst to anticipate, the burst length for a reservation request and
the buffer status can be made reasonably short without losing frame
efficiency.

If an inactive TDMA terminal desires to send a reservation request, it
must first acquire the control burst from the subnetwork central con-
troller and then use the open-loop method for burst acquisition by send-
ing the request burst, which includes the buffer status, in the designated
time slot of the predetermined frame. When the central controller
receives the request, a new network map will be generated and broadcast
to all terminals. Upon command from the central controller, all terminals
in the subnetwork will be switched to accommodate the new network
map at the time determined by the central controller. Fully mesh-like
networking can thus be realized, even though the control is accomplished
in a centralized (tree network) fashion.

For high bit rate TDMA subnetworks such as AI, Az, and A, in Figure 1,

larger G/T earth stations and high bit rate TDMA terminals are employed.
For a 14/12-GHz satellite with transponder spacing of about 50 MHz, the
antenna diameter and IIPA power level are about5.5 in and 600 W, respec-
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tively, to achieve a 54-Mbit/s transmission rate. It is assumed that the
TDMA burst modem at each earth station uses minimum-shift-keying
(MSK) modulation with proper pulse shaping and adequate circuits for
carrier and bit timing synchronization. To minimize earth station costs,
no up-link power control is employed. The network and satellite access
controller must operate at a bit rate as high as 54 Mbit/s.

The terrestrial interface must have significantly more buffer storage to
accommodate higher traffic requirements. High-speed ports ranging from
224 kbit/s to 6.3 Mbit/s can be provided for high-speed computer data
transfer. Their outputs are fed directly into the compression buffer with-
out link control protocol. It is assumed that necessary buffer and link
control will be performed at the user equipment. Therefore, the equip-
ment and associated software can be significantly more complex than that
used in the low bit rate subnetworks. Minicomputer-based or multiple-
microprocessor-based implementations may be necessary; however, the
same centralized network control principle is used as in the low bit rate
subnetworks.

Compatibility with multibeam satellites

The system described thus far assumes that the up- and down-beam
coverage of the transponder can "see" all earth stations. Therefore, every
station can see its own burst. In multibeam satellite systems, however, it
is sometimes impossible for a station to see its own transmissions. Hence,
the network control problem can be more complicated. (For instance, the
network control problem of the multibeam INTELSAT V TDMA system is
much more complex than many of the single-beam coverage domestic
TDMA systems.) Two network control issues are of particular importance:
the spot-beam network synchronization and the demand assignment
method.

TDMA network synchronization in the multibeam system must be
achieved with the aid of stations in other beams. It is assumed that the
high bit rate main reference stations, RI and R2, will have the necessary
means to perform satellite ranging, initial acquisition, and steady-state
synchronization with the cooperation of reference stations in other beams
similar to the method employed in the INTELSAT V TDMA system. It is
desirable, however, that the reference stations in each beam or the
reference station in one beam and the cooperating relay station in the
other beam coordinate the reference burst transmission to ensure that
bursts originating from the two up-beams arrive at the satellite simul-
taneously with respect to the frame reference. Therefore, all frames on the
satellite will be synchronized.
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This can be achieved as follows: the primary reference station transmits
a reference burst which establishes the start of frame at the satellite. The
secondary station in the other beam, either a reference station itself or a
relay station, receives the reference burst of the primary reference station
at a time t and calculates the necessary delay d so that a reference burst
transmitted by the secondary station at time t + dwould arrive at the satel-
lite in synchronization with the start of a frame. When this is accom-
plished, stations in each beam can align their bursts with the start of a
frame by simply listening to the corresponding reference burst trans-
mission in the individual beam.

For the FDMA/TDMA earth stations, the subframe reference bursts in
the transponder are again generated by the main reference station RI (or
R2) in each beam, which also computes and updates the relative delays
between the reference station and the other stations in the low bit rate
subnetworks and broadcasts them in the subframe reference bursts. Each
earth station, including the central controller of the subnetworks,
performs the functions described in the previous sections except that the
transmitting and receiving bursts are dedicated to, and come from, a
separate transponder. Thus, the system should be compatible with multi-
beam satellites.

Compatibility with satellite -switched TDMA

Satellite-switched (ss) TDMA systems have been planned for future
multiple-beam satellites to improve network connectivity and satellite
throughput capacity. Since SS-TDMA systems are regarded as the natural
successors of TDMA systems, it is of interest to determine whether the
mixed TDMA and FDMA/TDMA system proposed in this paper is compat-
ible with SS-TDMA system concepts.

From Figure 2, it is obvious that during the portion of the frame when

simple TDMA is employed, the proposed system is compatible with ss-

TDMA operation. During subframe T,, if all bursts from the FDMA/TDMA

carriers in a specific time period are destined for the same beam, they can
all be time-switched into that beam. If in a specific frequency slot there is
no traffic destined for that beam for a specific time duration, no burst will
be transmitted to that beam in this particular frequency slot, but there
may be traffic bursts to that same beam from other carrier frequency slots.
Thus, the whole transponder must still be switched to that beam to
accommodate the traffic requirements in the other carrier frequency slots.
Clearly, with some potential loss in transponder loading efficiency, the
FDMA/TDMA mode of transmission in subframe T, can be made

DEMAND-ASSIGNED MIXED TDMA AND I DMA/TDMA SYSTEM 169

compatible with the SS-TDMA operation by proper burst scheduling.
Therefore, the proposed mixed TDMA and FDMA/TDMA system appears
compatible with SS-TDMA operation. To maximize transponder efficiency,
however, and to ease control of SS/TDMA switch time, it is necessary to
allow the reference station to know the complete burstmap of both TDMA
and FDMA/TDMA systems.

Transmission system performance

Figure 7 shows the transmission system block diagram for performance
evaluation over a hypothetical satellite. At a high data rate (54 Mbit/s), it
is assumed that the earth station IIPA operates at saturation, and that the
corresponding satellite power amplifier is overdriven by about 4 dB to
reduce the down-link power losses induced by up-link fades. Since no up-
link power control is employed, the desired high bit rate signal may
experience significant losses when subjected to severe up-link fades, due
to interference from high bit rate TDMA carriers in adjacent transponders.
Proper pulse shaping and use of the "more constant" envelope MSK modu-
lation technique can minimize the impairments caused by adjacent tran-
sponder interference [4].

Figure 8 shows the power spectral density at the output of the earth
station HPA for this shaped MSK signal by using the filter characteristics
shown in Figure 9 on an ideal MSK signal before IIPA amplification. (The
amplitude and phase characteristics of the HPA are shown in Figure 10.)
Even with sidelobe minimization, adjacent transponder interference can
still be a major cause of system performance degradation, especially
under severe up-link fades. The required En/N„ for achieving a given BER
performance for the high rate TDMA/MSK system, as determined by com-
puter simulation, is shown in Figure I I with various levels of up-link fade
as parameters. (The satellite receive and transmit filters are assumed to be
6- and 4-pole elliptic filters with group delay equalization, respectively.
The TwrA amplitude and phase characteristics are shown in Figure 10.)

For the 1.544-Mbit/s low-information bit rate FDMA/TDMA/QFSK trans-
mission, it is assumed that the earth station IIPA operates at 4-dB input
backoff from saturation. Because of the FDMA/TDMA mode ofaccess, the
satellite power amplifier must be backed off considerably into the quasi-
linear region. Since no up-link control is employed, the desired signal
must have adequate margin to compensate for the losses caused by adja-
cent carrier interference, intermodulation noise, and loss of down-link
power. Carrier frequency assignments must be carefully planned to mini-
mize the degradation caused by intermodulation and adjacent carrier
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interference . Figure 12 illustrates the intermodulation power spectral
density for a rate 1/2 FE C coded 10-carrier assignment plan which mini-
mizes the effect of intermodulation and adjacent interference on the
assigned carriers . This plan was generated by using the difference -set con-
cept for channel frequency assignment developed in Reference 5. The
intermodulation power spectral density was computed by the PRIME
software developed in Reference 6. The QPSK modem transmit and
receive filters were assumed to be of the 4-pole Butterworth type with BT
products of 1.5 and 1.1 , respectively.

Figure 13 shows the BER versus the required down-link Eb/No perfor-
mance of the QPSK system for the worst carrier in the 10-carrier plan for
the cases of no up-link fade and 3-dB up-link fade, respectively . The rate

one-half FEC was assumed to be an extended Golay (24, 12) code with

2-bit weighted erasure decoding (71, which is relatively inexpensive and

simple to implement . Should additional power margin be required, the
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Figure 10. Amplitude and Phase Characteristics of HPA and TWTA

rate 1/2, constraint length 7, convolutional code with Viterbi decoding
could be used to yield an additional 3-dB coding improvement in EE/N0 ata BER of 10-s.

Example network

To illustrate the usefulness of the proposed system concept, the hypo-
thetical network shown in Figure 14, which includes 10 national data pro-
cessing centers (DPCS) with large traffic requirements, will be considered.
Traffic between these national DPCS can vary between 224 kbit/s and
1.544 Mbit/s. A total capacity of 15.44 Mbit/s, therefore, is needed to
handle the peak traffic condition for the high data rate subnetwork
between the 10 national DPCS.
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Each of the national DP centers is also connected by a full-duplex
50-kbit/s link to eight regional DP centers, and serves as a hub to these
centers. Occasionally, some of the regional DP centers may require a full-
duplex 50-kbit/s link to exchange data, in which case the link capacity
from the hub to these nodes will be assigned to other links. Thus, each

Figure 12. Tntermodulation Power Spectral Density for the Rate 1/2 FEC
Coded 10-Carrier Plan at 7-dB TWTA Input Backoff

regional subnetwork requires 8 X 2 X 50 kbit/s = 0.8-Mbit/s
capacity.

Two network design options are available for this example network.
One employs a large earth station operating at 54 Mbit/s at each national
and regional node. A total of(10 + 8 X 10) = 90 Large earth stations is
required. With about 200 symbols per burst for preamble and guard time,
this homogeneous high bit rate solution using large earth stations will
consume about 45 percent of the 54-Mbit/s transponder resources.

The second design option employs large earth stations only at the
national DP centers; small earth stations are used for all regional nodes. A
total of 10 large and 80 small earth stations is required. The national
subnetwork with a total capacity of 15.44 Mbit/s requires about one-third
of the transponder resources or a subframe of about 5 ms of the 15-ms
frame at 54 Mbit/s. Each regional subnetwork can be carried by one
FDMA/TDMA carrier at a 1.544-Mbit/s information rate with a subframe
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duration of approximately 10 ms. With about 240 symbols per burst at a
1.544-Mbaud rate for preamble and guard time, each regional sub-
network uses nearly a complete subframe. The 10 regional subnetworks
occupy all 10 FDMA/TDMA subframes of 10 ms each in the 10 channel fre-
quency slots. Therefore, with this mixed G/T and mixed burst rate ap-
proach, the complete transponder (100 percent) is occupied.
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Figure 14. Example Network
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If it is assumed that a large earth station costs t times (e.g., t = 5) more
than a small one, and that the cost of a small earth station is I unit, then
the homogeneous approach (large earth stations at all nodes) would lead
to a cost of about 90 X 5 = 450 units, while the nonhomogeneous
approach would lead to a cost of about 10 X 5 + 80 = 130 units, Thus,
a cost reduction factor of about 3.5 to 1 can be achieved at the expense of
about a 2-to-1 reduction in total transponder throughput (45 percent vs
100 percent). These factors represent only an illustrative example;
detailed trade-off studies will be required for specific situations.

The frame duration for high and low data rate transmissions should be
apportioned by the overall satellite system manager (controller). The sub-
frame boundaries should be optimized to maximize the overall satellite
transponder throughput according to demand, which could be adjusted
not on a call-by-call basis, but on some periodic basis, e.g., hourly, daily,
weekly, or monthly. The central controller of each subnetwork, however,
should perform the burst scheduling within the assigned subframe
boundaries.

Conclusions

The proposed demand-assigned satellite communications system
could provide a cost-effective solution for networks having a wide range of
traffic requirements. Mixed G/T and data rate earth stations are em-
ployed to minimize the earth segment costs at nodes with low traffic
requirements. The mixture of high data rate TDMA and low data rate
FDMA/TDMA nonhomogeneous mode of transmission could significantly
reduce earth segment costs at the expense of only a slight reduction in
space segment utilization. The proposed system appears promising as a
cost-effective means for allowing both large and small networks to share
given transponder resources while employing both large and small earth
stations. The system could be useful for interconnecting low data rate
subnetworks into a larger network. The proposed system is compatible
with satellite-switched TDMA operation in future multi-beam satellite
systems.
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SATNET packet data transmission*

L. PALMER, J. KAISER, S. ROTHSCHILD, AND D. MILLS

(Manuscript received December 18, 1981)

Abstract

The Atlantic Packet Satellite Network (SATNET) has operated experimentally
via the INTELSAT IV-A Atlantic primary satellite since 1975. The system allows

packet data transmission between three INTELSAT standard A earth stations at
Etam, West Virginia; Goonhilly, United Kingdom; and Tanum, Sweden. Packet

transmissions are time shared on a single carrier in the SPADE transponder of the
satellite in a format designated as multidesti national half duplex (MDHD).

During the final phase of the experimental period (mid-1979 through early
1981), new packet satellite program (PSP) terminals were installed at the three
INTELSAT standard A earth stations, and at a fourth smaller earth station at Clarks-
burg, Maryland. These terminals provided expanded capability through several
additional transmission modes that allow the smaller earth station to participate
in the distributed control of the demand-assigned network. New testand monitor-
ing (T&M) features were also included in the Psp terminals to assist in the monitor-
ing and maintenance of the transmission links.

In the second quarter of 1981, SATNET was converted from experimental to
operational status. This paper describes the SATNET system and summarizes the
performance of the RE transmission links. Future plans are discussed, including
the utilization of the new r&M features.

*The work reported in this paper was sponsored by the Defense Advanced
Research Projects Agency (DARPA).
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Introduction/background

This paper reviews COMSAT's recent experience with SATNET, which
connects ARPANET [1]-[I0] to similar networks in Europe via the
INTELSAT Atlantic primary satellite. SATNET has operated on an experi-
mental basis since 1975 and utilizes a single 64-kbit/s channel in the
SPADE transponder to interconnect three large 30-m (INTELSAT standard
A) earth stations in the United States, the United Kingdom, and Sweden.
These stations time share this channel and transmit packets of digital data
which are received by all three stations in the network. The interconnec-
tion to the terrestrial network is provided by a satellite interface message
processor (satellite IMP or SIMP) located at each earth station.

The mode of transmission used in SATNET is designated as multides-
tinational half duplex, which is distinctly different from that used in other
international satellite data communications. Conventionally, digital data
are sent at rates from 300 to 4,800 bit/s (sometimes as high as 9,600 bit/s)
over 4-kHz analog voice channels. These channels are provided by com-
mon carriers and are routed to an international gateway earth station from
remote telephone exchanges. The channels are multiplexed with other
voice-band channels in an FDM baseband. Generally, the multiplexed
baseband signals are transmitted intact to a particular country from the
gateway earth station so that the receiving earth station is unaware that a
particular channel carries data rather than analog speech. The global
satellite system also provides primarily two-way (duplex) voice circuit

capabilities, i.e., a channel in each direction. (Data transmission may or
may not require simultaneous two-way channels.) Connecting N nodes
(countries) using conventional voice-band data circuits would therefore

require N(N - 1) channels in the spacecraft, and equipment at each
earth station to handle the transmissions to and from N - I other nodes.

SATNET departs significantly from this conventional mode of inter-
national data transmission. SATNET utilizes only a single channel in the
satellite (half-duplex operation), and all earth stations transmit on the
6-GHz up-link frequency corresponding to this channel. Simultaneously,
all stations receive the 4-GHz down-link carrier corresponding to the
down-link transmissions. Thus, all transmissions are multidestinational
or broadcast, since all stations in the network receive all transmissions on
the single channel. Bursts of data are "addressed" so thata specific receiv-
ing station retains only those bursts intended for that station.

This mode of operation is made possible by subdividing time into slots
approximately 10 ms long and assigning these time slots to the different
earth stations for data transmission. (A 10-ms interval corresponds to 640
bits at 64 kbit/s.) A collection of 128 slots (approximately 1.3 sin dura-
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tion) constitutes a frame. A few slots are reserved for control (i.e., for
requesting future information slots), and most of the remainder are
reserved for the actual transmission of information. Four slots transmit
"hello" bursts to allow earth stations in the network to remain syn-
chronized, and hence to share the frame, even during periods of the day
when none of the stations has data to transmit.

Synchronization and channel scheduling are performed in the SIMP,
which is operated by a minicomputer located at each earth station. The
SIMP, which also serves as an interface to the terrestrial network, is con-
nected via high-speed (--50-kbit/s) data transmission lines to nodes in the
terrestrial network. These nodes are generally located several hundred
miles from the large standard A earth stations that serve as international
gateways.

In the direction of the satellite channel, the SIMP is connected to inter-
faces and burst modems that convert the packet data into a form that is
suitable for transmission over the satellite channel. For early SATNET
experiments, these interfaces and modems were implemented partly by
modified SPADE channel units. Currently, all of these functions have been
integrated into a permanent PsP terminal that is installed at each earth
station along with the SIMP.

Packet switching experiments between the United States and Europe
began in the fall of 1975, when the first SIMP-SPADE interface (ssi)
modules were installed at the Elam and Goonhilly earth stations. This
initial two-station "network" was used to determine the performance of a
communications satellite system in which two earth stations, or nodes,
share a single 64-kbit/s channel. At each earth station, the SIMP initiated
burst transmissions. The SIMP was implemented by a Honeywell 316
computer, which was modified by Bolt, Beranek, and Newman, Inc.
(BBN), of Cambridge, Massachusetts, for operation in SATNET. New ssls
were installed at Etam and Goonhilly in 1977, and later in the same year,
at Tanum, resulting in the present network of three standard A earth
stations.

In addition to these three large earth stations, an unattended earth
terminal (UET) at COMSAT Laboratories has occasionally been used as a
fourth node in SATNET. Forward error correction coding of the data is
necessary when the UET participates in the network, since the UET
operates at a G/T of 28.5 dB/K, as compared to a G/T of 40.7 dB/K for
INTELSAT standard A stations. Because of its lower G/T, the UET cannot
receive the normal 64-kbit/s QPSK transmission mode, so that bursts in-
tended for the small station must be sentas rate 1/2 coded BPSK (I 6-kbit/s
information bit rate).
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Network configuration

Figure 1 shows the network configuration of SATNET, with nodes at
Etam, Clarksburg, Goonhilly, and Tanum. Each node has a PSP terminal,
built by COMSAT laboratories, which contains advanced design burst
modems and codecs built by the Linkabit Corporation; and the SIMP, a
32k-word Honeywell 316 minicomputer with special interfaces and
software supplied by Bolt, Beranek, and Newman Corporation. Traffic
between SATNET and the terrestrial networks flows through gateways,
which are in most cases separate devices created from DEC PDP/LSI-11
machines connected to both networks.

The gateways shown in Figure 1 are as follows: BBN gateway, con-
necting an ARPANET IMP to Etam via a 50-kbit/s line; UCL gateway con-
necting University College, London, to Goonhilly via a 48-kbit/s line; and
the NDRE (Norwegian Defense Research Establishment) gateway con-
necting NORSAR (Norwegian Seismic Array) to Tanum via a 9.6-kbit/s
line.

Figure 2 shows the system configuration inside the earth stations. Data
packets are received at the terrestrial interface of the SIMP where the data
are stored briefly. These packets, or bursts, of digital data are processed in
the sIMP, buffered as necessary, and scheduled for transmission over the
satellite channel according to priority and/or allowable message delay.
The SIMP also synchronizes time slots within a 1.3-s time-division
multiple-access (TDMA) frame, and initiates time slot requests in a control
subframe to effect distributed control and demand assignment of seg-
ments of the channel, in cooperation with the sIMPS located at the over-
seas terminals. Several channel-scheduling protocols are available in
SATNET; contention-based priority-oriented demand assignment [11] is
generally used by the large stations.

At the proper time within the TDMA frame, the sIMPforms a packet con-
taining header and data portions and sends this burst to the PsP terminal,
where it is processed for transmission over the satellite channel. In
addition to prefixing acquisition preambles on the front of each packet,
the interfaces in the PSP terminal can apply error-control coding to all, or
only a part, of the packet. These optional modes of transmission are
selected by the sIMP and passed to the PsP terminal as information in the
first two header words; the optional modes include uncoded QPSK
(channel rate of64 kbit/s); rate 1/2 coded QPSK (information bit rate of 32
kbit/s); and rate 1/2 coded BPSK (information bit rate of 16 kbit/s). The
mode of transmission selected by the SIMP depends on the receiving
potential of the least capable earth station in the network that must
receive that particular packet. With only large earth stations (i.e.,
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INTELSAT standard A) in the network, uncoded QPSK transmission is
used; the Psp terminal contains redundant interface units and modems for
this transmission mode.

The modulated carrier from the psp terminal is combined with all SCPC
carriers at Etam, or with all SPADE carriers at Goonhilly orTanum in their
respective IF subsystems, and then transmitted to the earth station
ground control equipment (GCE). The psp terminal thus interfaces the IF
subsystem of the earth station and generates bursts of QPSK (or BPSK)
modulated signals for up-conversion, amplification, and transmission to
the satellite.

In addition to the data transfer paths between the SIMP and the psp
terminal, a command and monitoring path is available through which the
SIMP can automatically reconfigure the PsP terminal and extract
monitoring data from the interfaces and modems. These functions are
utilized for status monitoring, link quality monitoring, and for reconfigu-
ration and troubleshooting.

Upon signal reception, the down-link channel from the satellite is
down-converted to an intermediate frequency and applied to the receive
side of the modem in the PSP terminal. The modem detects the presence
of a burst, synchronizes to the incoming signal, and performs coherent
demodulation of the binary data. For coded packets, error-correcting
decoding is performed in the receive interfaces. The received data, less
the acquisition preambles, are then passed to the SIMP as serial binary
data. The SIMP, in turn, processes the received data, stores them briefly,
and then retransmits them over the terrestrial channel to a gateway or
host computer. By making use of redundant data within each packet, the
SIMPS, utilizing both hardware and software checksums, check for any bit
errors in the received packet and thus determine if data are to be passed
to their host computer or discarded. If a packet is discarded because of
detected errors, the host-resident protocols will initiate selective
retransmission of that packet.

Transmission characteristics

SATNET is assigned to one of the 800 available channels in the SPADE
transponder of the Atlantic primary path INTELSAT satellite. These
channels have 45-kHz center-to-center spacing. Most carriers in the
SPADE transponder carry 56-kbit/s speech using 7-bit PCM with voice
activation. The SATNET carrier has a different transmission format, as dis-
cussed later in this section.
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The link budget for 64-kbit/s transmission in the SPADE transponder
gives (C/N„)„„ of 69 dB-Hz and (C/N),,.,, into a standard A terminal of
64.7 dB-Hz. When combined with a worst-case intermodulation noise
density of 69 dB-Hz, these up- and down-link carrier power-to-noise-
density ratios (C/N„) give an overall (C/N„),- value of approximately
62 dB-Hz. This results in a nominal Ea/N, of 14 dB for 64-kbit/s
transmission. In a 38-kHz noise bandwidth, this gives a C/N of
16.2 dB as the nominal operating condition of the links into the large earth
stations. For packets received at the small earth station at Clarksburg,
(C/N,),, is reduced by the difference between the G/T values of the
standard A earth station (G/T = 40.7 dB/K), and the UET (G/T = 28.5),
resulting in overall transmission that is almost completely down-
link limited with (C/N,), = 52.5 dB-Hz. The small terminal thus
operates at C/N = 6.7 dB in a 38-kHz bandwidth, and E,,/No = 10.5 dB
for 16-kbit/s transmission.

Measured modem back-to-back error-rate performance is plotted in
Figure 3 for both uncoded QPSK (64-kbit/s) and rate 1/2 coded BPSK

(16-kbit/s) operation.

Transmission format

The frame structure used in SATNET is controlled by the s1MP. The
10-µs clock in the Honeywell 316 s1MP is divided by 1024 to produce the
epochs of the virtual slots (vs), each having a duration of 10.24 ms. The
frame consists of 128 vs and has a duration of 1.31072 s. The current frame
format reserves four vs/frame for hello bursts, one transmitted by each of
the three standard A stations, and one reserved for the small station at
Clarksburg. During a 24-hour period, each station transmits 65,918 hello
bursts which are received by all active stations.

The rest of the frame is divided into control and information subframes
as shown in Figure 4. The control subframe can utilize one of several
access protocols. In the first, fixed priority-oriented demand assignment
(EPODA), each station is assigned a time slot in which to request assign-
ments in the information subframe. In the second, contention-based
priority-oriented demand assignment (CPODA) [I1], the control subframe
is utilized in a slotted Aloha mode. For this mode to operate properly,
reliable detection of colliding control bursts (contentions) must occur at

all receiving stations.
The format of the bursts transmitted in SATNET is shown in Figure 4.

Each burst is preceded by a preamble of 64 alternating symbols to allow
modem acquisition. For operation into small earth stations, this preamble
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must be lengthened to 96 symbols. Following the preamble is a
16-symbol unique word, divided into two 16-bit quadrature sequences,
which provides word synchronization for the data and allows for phase
ambiguity resolution of the modem output. After the unique word, four
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8-bit "start of data" characters appear which are used by the STMP for
synchronization. The packet itself follows these control characters and
consists of 128 symbols (sixteen 16-bit words) for the packet header
followed by the data themselves. Data are inserted as variable numbers of
16-bit words up to a maximum of 64 (2,048 bits or 1,024 symbols).

A user with a single time slot assignment per frame who continuously
sends "full" packets would send 2,048 bits every 1.3 seconds for a through-
put of 1.5625 kbit/s. Such a user would consume 3.65 vs/frame, or ap-
proximately one-thirtieth of the total information subframe capacity.
Additional characters are appended to the end of the packet as shown in
Figure 4. Two 8-bit characters (8 QPSK symbols) are used for an "end-of-
data" sequence to be utilized by the sIMP, and 24 bits (12 symbols) are
used for an error-detection checksum.

For transmission among standard A stations, the modulation tech-
nique used over the links is QPSK, where each symbol in Figure 4 conveys
two bits of information. This transmission format (mode 1) has a burst in-
formation bit rate of 64 kbit/s and uses no coding. The small earth station
operates at approximately 10 dB less (C/N„), than the standard stations
and cannot reliably demodulate the data in these transmissions. Those
transmissions that must be received by the small stations (all control
bursts and information bursts intended for the small station) are sent as
rate 1/2 coded BPSK bursts. The information rate in these bursts is 16
kbit/s (6 dB lower), and the combination of rate 1/2 convolutional
coding/Viterbi decoding gives a coding gain of4 to 5 dB (depending upon
error rate). The combination of rate reduction and coding gain makes up
for the 10- to Il -dB G/T disadvantage of the small station.

Additional transmission modes are included in SATNET where only part
of the packet is encoded for error control. These modes are necessary
when channel request or other control information is inserted into
normal data packets rather than confined to the control packets. In this
case, the small station must also receive a portion of all packets in order to
participate in the distributed control processing. Typically, these mixed
packets subdivide the data from the s1MP into two parts: the first
(including the header) is sent as rate 1/2 coded BPSK, and the second is
sent as uncoded QPSK. Encoder trailing bits (6 bits) and a second unique
word are inserted between the two portions of these mixed bursts.

Reception of hello packets

One of the most useful long-term indicators of SATNET performance is a
count of hello packets successfully received with no errors at each earth
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station. As noted earlier, each station transmits about 66,000 hello
packets per day and receives its own packets and those of each of the other
stations. There are, therefore, nine links among the three large earth
stations. Each SIMP in the network is programmed to count the hello
packets received from each station during an interval of 64 frames (1.4
minutes). During this interval, 64 hello packets are expected from each
station and the actual numbers received with and without a good check-
sum are counted.

Figure 5 shows the events that contribute to this counting process.
Hello packets can be missed completely due to failure of the modem to
acquire the preamble or of the interface to detect the unique word. This
can occur if the burst from a station is low in power level or out of fre-
quency tolerance. Power levels for all stations are adjusted, if necessary,
via Etam. Figure 6 shows envelope levels of a typical set of three hello
bursts received at Etam. For this example, the hello burst received from
Tanum is 2 dB low, requiring adjustment of Tanum's transmission.
Frequency tolerance is kept within ±2.0 kHz, which is a fairly large frac-
tion (six percent) of the symbol rate. Achieving rapid, reliable acquisition
despite such a frequency uncertainty of ±2.0 kHz was one of the more dif-
ficult tasks in development of the microprocessor-based PSP modem.

The packet acquisition process involves several steps. First, the
presence of a packet must be detected. The microprocessor is thus con-
stantly processing the samples taken from the in-phase and quadrature
(I&Q) channels of the receiver and applying these to a matched filter
(inverting the sign of alternate pairs of samples), looking for the
alternating BPSK preamble at the beginning of the packet. This process is
essentially one of energy detection, although the quadriphase signal must
contain an alternating preamble. (The modem will not detect a burstwith
an unmodulated carrier preamble, for example.) Parallel matched filters
are used so that a measure of coarse symbol timing is achieved when
packet presence is detected in one of the filters [12].

When packet presence is detected, a sequence of the most recent
samples is processed again to estimate the frequency offset between the
incoming packet and the local reference. The final local oscillator in the
modem heterodynes incoming signals to zero frequency ±2.0 kHz (the
maximum initial frequency uncertainty in the system). With this maxi-
mum initial uncertainty, the incoming phasor can rotate 22.5° during one
symbol time or a full cycle over 16 symbols. The frequency estimator
basically makes an estimate of 9 (phase derivative) over a span of 32
symbols in the preamble. This technique yields a frequency estimate with
an accuracy of approximately 30 Hz. The initial frequency estimate is
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applied to initialize a digital second-order phase-locked loop that tracks
the signal phase over the remainder of the packet. This final "local
oscillator" rotates the complex sample pairs, thus accomplishing a
final heterodyning very close to zero frequency.

The modems in the PsP terminals yield acquisition probabilities higher
than 0.9999 with 64-symbol preambles when operating into large earth

stations with C/Nof l6-17 dB. For coded operation into small terminals, a
96-symbol preamble is necessary to maintain the detection probability at
0.999 or slightly better when operating under normal conditions

(C/N = 6 dB). With the large stations, therefore, the failure to acquire a
packet should have only a small effect on the missed-packet performance
goal of 0.1 percent.

Following acquisition, the modem outputs two channels of binary data
to a receive interface which contains matched filters that are searching for
the unique words. These filters must search for the / and Q patterns or
their inverse on each channel and detect a match with no more than two
errors in either comparison. At normal binary error probabilities (10-' to
10-6), this process is highly reliable and contributes very little to missed
packet performance.

All of the data following the unique words are protected by a 24-bit
cyclic redundancy check (CRC) checksum which fails, with high proba-
bility, if one or more bit errors occur in the header, the data, the check-
sum itself, or in the 48 bits of sIMP control characters. The missed packet
percentage should, therefore, correspond roughly to the bit-error rate on
the channel, p, times the number of bits included in the packet.

Prior to April 1979, long hello packets were used in SATNET and the
fraction of packets missed would be expected to be 1,400 p, i.e., 1.4 per-

centmissed ifp = 10-'. After this time, the hello packets were shortened
and the fraction missed would be expected to decrease to approximately
250 p (0.25 percent missed forp = 10-'). This approximate relationship
for packet miss rate allows the comparison in Table 1 between the bit-
error rate standards for the speech users of the SPADE transponder and the
missed hello packet behavior in SATNET. The packet transmission
network begins to experience problems at a miss rate of 1 percent and
these problems become serious at 10 percent. The latter miss rate cor-
responds to bit-error rates in the region 10 ',which are barely perceptible
to speech users. SATNET is thus much more sensitive to impairments in
the SPADE transponder and the SATNET reporting serves as a sensitive
indicator of these impairments.

Figure 7 shows long-term missed-packet behavior on SATNET. Over the
long term, about 0.1 percent of the hello packets are missed and it is in-
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TABLE 1. EXPECTED MISSED PACKET BEHAVIOR VERSUS CHANNEL,,

"/ MISSED HELLO

PACKETS IN SATNET

CHANNEL QUALITY STANDARD LONG SHORT

BIT ERROR (ACTUALLY APPLIES (1,400-BIT) (250-HIT)

PROBABILITY, To AN 8-BIT PCM QUALITY OI HELLO HELLO

n VOICE CHANNEL) PCM SPEECH PACKETS PACKETS

10-s Will he achieved

80% of time

Excellent 0.16 0.05

10-5 Very good 1.2 0.3

10-4 Allowed 0.3% of
worst month

Noise barely
perceptible

12.0 3.0

2 X 10 4 Noise def-
initely

25.0 5.0

noticeable

5 X 10-4 Noise bad
but tolerable

50.0 12.0

to some users

10 - 3 Allowed 0.01%
of year

PCM speech

severely

degraded
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ferred that this miss rate applies to control and information packets as
well. Such performance is perfectly acceptable in terms of throughput
experienced by the users and corresponds approximately to an error rate
of 10-6. An increase in error rate to 10', resulting from a reduction in

E6/N0 of only I dB at an earth station, can result in a miss rate of 1 percent;
this causes noticeable degradation in throughput. An increase in power
level is not permitted by INTELSAT operating procedures. Thus, the power
balancing on the SATNET finks to better than _+0.5 dB has been a critical
operational problem.

Test and manitoriagparameters

An important feature of the modems in the new PsP terminals is the
provision of test and monitoring (T&M) parameters on each packet
received by that modem. These measurements, in the form of six 8-bit
words, are combined with 16 bits generated in the receive interface so that
a total of four 16-bit words are transmitted to the sIMP at the end of each
packet. The format of the data transmitted to the SIMP with and without
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the T&M words is shown at the top of Figure 8. Note that when T&M words
are appended to the packet by the modem, these extra words are added
immediately after the information bits, but they are not protected by the
CRC checksum that was calculated before transmission. Consequently,
error detection must now be done in the receive interface, with the result
(good or bad) inserted as a single bit in the fourth T&M word. The SIMP
must then ignore the result of its own hardware checksum calculation
when the T&M words are enabled.

The three modem-generated T&M words (16 bits each) are each made
up of two 8-bit words representing measurements made in the micro-
processor (i.e., the digital) portion of the modem. These words represent
the following measurements:

a. Word #1. This word is made up of two bytes, the first a quies-
cent AGC level with no signal present, and the second representing
the packet AGC level. The AGC operation in this particular modem is
accomplished by feeding back an 8-bit word from the processor
which is D/A converted to provide a control current to a diode which
serves as a variable attenuator in the analog portion of the modem.
An error signal is derived by attempting to maintain gain such that
the combination of S + N into the quadrature pair of A/D con-
verters is slightly below the clipping level. Typical measured values
of packet AGC are shown in Figure 9. These data indicate T&M byte
value, on a scale of 0-255, versus power into the modem, P;,,.

b. Word #2. The two 8-bit bytes in the second T&M word give
initial and final values of the frequency offset between the carrierfre-
quency of the incoming packet and an internal reference oscillator
within the modem. The initial frequency estimate (output as the first
byte) is made during the acquisition preamble, which consists of 64
symbols of an alternating BPSK sequence. At the end of this pre-
amble, the initial frequency estimate is supplied as an initial condi-
tion to a second-order phase-locked loop that continues to track
phase (and refine the frequency estimate) during the remainder of
the received packet. The second byte of the word represents the final
frequency estimate. Both bytes use seven active bits, thus divid-
ing the possible ±2-kHz input frequency difference into
4,000/128 = 31.25-Hz "bells."

c. Word #3. The third T&M word contains two 8-bit bytes, the first
giving a measure of E, (energy per bit) and the second a measure of
N0 (input noise density in W/Hz). If the samples from the two
channels of the QPSK modem are collected in pairs and plotted as a
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250

200

b0

0
26 28 -30 -32

INPUT CARRIER LEVEL IdBml
-34

Figure 9. Packet AGC and T&M Byte Value vs P;,

for Modems #2 and #3

scatter diagram as shown in Figure 10, the mean vector length is pro-
portional to and the variance of the scatter about this mean is
proportional to N„12. This scatter would be caused by the com-
bination of all sources of noise in the system (thermal noise,
intersymbol interference, quantizing noise, etc.), but this equivalent

"N„/2" should be representative of the C/N ratio into the modem.
Figure 11 shows typical measured values of the ratio ofthe EE and N„

byte values (Eb/N,,). The measurement of E,, tends to be constant

because of the AGC action and exhibits very little statistical
fluctuation; the N„ estimate, on the other hand, tends to be much
noisier. In practice, additional processing is needed on these twoT&M

words to form the ratio Eo/N. This ratio exhibits an accuracy of

about ±1.0 dB on individual packets.

Each of the three types of parameters measured in the modem is poten-
tially useful in monitoring link performance and pointing out areas ofmis-
alignment and imbalance between transmitting stations. The measure-
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merit of frequency offset on incoming packets has turned out to be an ac-
curate and stable measurement. Observing these measurements at a
single receiving station (Etam, for example) makes it possible to measure
the relative frequency offsets between packets received from the three
stations (including Etam's own transmissions). The resolution of the
measurements ('-30 Hz) is more than adequate to maintain alignment
between stations.

The measurement of packet AGC level at a single receiving site is also
potentially very useful in resolving one of the more troublesome prob-
lems in SATNET, namely, the maintenance of power balance between the
transmissions from the three different earth stations.

The measurement of E, and N,,, or the ratio Eb/N,, is potentially the
most useful T&M word, since this variable should be a direct indicator of
bit-error rate on the links and, hence, of link quality. The AGC operation
on each packet tends to normalize the E, measurement on each received
packet. Thus, this parameter tends to be a constant and exhibits very little
statistical fluctuation. The noise measurement, however, shows much
more statistical fluctuation even for long packets in which many symbols
are averaged to give the single T&M byte. Thus, the single-packet E,,/N,

measurement accuracy is limited by the noisy N, estimate and accuracy is
approximately ±1 dB for long (1,000-bit) packets. This accuracy can be
improved by averaging over all packets received on a particular link over
an observation interval of 5 to 10 minutes.

PSP terminal

The Psp terminal is a self-contained baseband-to-IF unit which inter-
faces with the SIMP at baseband and the earth station IF subsystem at 70
MHz. Included in the terminal are two channel units, each capable of
supporting a burst mode data transmission rate of 64 kbit/s. One of the
channel units is also capable of supporting burst-mode transmission rates
of 16 and 32 kbit/s.

The subassemblies in the terminal include the following:

a. command and monitor module (cMM);
b. burst mode data test set (FITS);
c. the two channel units;
d. self-contained power supplies;
e. timing and frequency unit (TFU).

Figure 12 shows the locations of subassemblies a through d. Figure 13
is a view of the modules that are included in the redundant channel unit
configuration.
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Figure 12. PSP Terminal
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Figure 14 is a functional block diagram of the PsP terminal showing its
relationship with the sIMP and the earth station IF subsystem. The
channel units contain the interface modules between the sIMP and burst
modem. In Figure 13, the upper channel unit, IFACE-A, is capable of
transmission at the 64-kbit/s uncoded QPSK rate only, while the lower
channel unit, PFACE-B, is capable of transmitting the coded and uncoded
data using either QPSK or BPSK.

Packet transmission is initiated by a signal (designated GOSIG) from the
sl MP. Reception of GOSIG causes the interface unit to generate a preamble
consisting of an alternating 1-0 pattern for bit timing recovery and a start
of message (soM) sequence, each of a specified length. The soM sequence
consists of a particular pattern, determined by whether transmission is to

a standard A or B station.
A second signal from the sIMP initializes the interface unit prior to oc-

currence of the next GOSIG, so that the proper preamble and soM are
generated for each packet to be transmitted. After completion of the pre-
amble and soM, the interface unit supplies a clock to the 5IMP, which
causes data to be passed to the interface unit from the SIMP. The SIMP data
are converted from serial to parallel and the two resulting data streams are
passed to the modem at a 32-ksymbol/s rate. For QPSK modulation, the
two data streams will be different, depending upon the particular data
pattern, whereas for BPSK modulation, both data streams are identical.
Coding of the data, if required, is performed on the transmit side in the
transmit mode controller/encoder, and upon reception, decoding of the
data, if required, is performed by the reception mode controller/decoder.

Figure 15 shows typical formats for the three packet types: uncoded
QPSK, rate 1/2 coded BPSK, and a mixed format consisting of rate 1 /2 coded
BPSK and uncoded QPSK modes.

Note that in Figure 15c, a second soM is inserted in the data to separate
QPSK from BPSK data. This soM is required on the receive side to resolve
the phase ambiguities of the demodulated QPSK data. The BPSK SOM
resolves the phase ambiguities in the BPSK data.

A burst-mode data test set (DTs) has been implemented and included
in the terminal to provide a realistic simulation of the sIMP as a packet
source and receiver, and to assist earth station personnel in maintaining
the terminal. The DTS packet format is similar to that generated by sIMP.
The transmission parameters such as packet length, coded length, mode
of transmission, and interpacket interval, as well as the data pattern (all
zeros, all ones, or pseudorandom), can be set manually. The receive side
ofthe DTS provides displays for indicating the number of packets received,
the number of packets received with bit errors, and the total number of bit
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Figure 15. Formats of Different 1

errors in all received packets. From this inform
bit-error rate can be calculated . Since the static
it is possible to perform transmission tests at
determine their performance characteristics.

Another major subsystem of the terminal is
module (cmm), a microprocessor -based unit tl
from the sIMP and issue commands to variou!
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The cMM can carry out several SIMP-initiated commands, which can be
initiated either by earth station personnel or by remote command from
the SATNET control center at BBN in Cambridge, Massachusetts. In addi-
tion to being able to resetall internal registers in the Psp terminal , itis also
possible to set certain other parameters within the terminal, e.g., the
length ofthe preamble for transmission to either standard A or B stations,
the pattern and/or length of the sours, and the allowable SoM correlation
error threshold from 2 to 5. The CMM can also request that the T&M data
generated in the modem and RMC/decoder be passed from the terminal
to the SIMP.

Conclusions and future plans

Some valuable lessons have been learned during the 5-year experi-
mental period regarding operation of future systems such as SATNET.

Currently, SATNET operates with a goal of X0.1-percent missed packets.
Missed packets are primarily those which contain one or more bit errors.
Thus, operation of SATNET links is sensitive to the bit-error rate of the
links. The range of bit-error rate objectives for speech, <10-e usually (80
percent of the time), >_10-4 occasionally, and >10 ' rarely, are perfectly
acceptable to the speech users of the SPADE transponder, but cause wide
variations in SATNET operation. Variations in link C/N's of I dB generally
cause the bit-error rate to vary by a factor of 10, which changes the missed
packet rate by a like amount.

An important feature of SATNET is the real-time monitoring provided
by the network control center. Each link is monitored minute-by-minute,
24 hours a day, 365 days per year. Since even brief transitory disruptions
are logged and reported, SATNET is a much more critical user of the satel-
lite link than a PcM speech user.

Mixed operation of standard A and standard B stations was shown to be
feasible in sATNET. Coding and information bit rate reduction are neces-
sary for the standard B station to receive packets from the satellite
intended for the small station; this situation leads to a moderate increase
in equipment complexity. The small station must also be able to partici-
pate in the distributed control concept.

Although small station operation was shown to be feasible, problems
were encountered during mixed-mode operation of large and small
stations (with coded and uncoded packets) when the CPODA control
algorithm was used. Then, certain coded control packets were detected,
demodulated, and decoded correctly even though a contention occurred
in the Aloha control subframe. Although problems of this kind were rare
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and occurred at only one station, they resulted in serious disruption of the
scheduling algorithm. This problem was accentuated by power im-
balance between the bursts received at the satellite. Reliable contention
detection remains a problem that must be solved before CPODA can be
used in a network with mixed station sizes. CPODA offers little advantage
in a 3- or 4-station network; as the network expands, however, it becomes
more and more desirable , because it would tend to minimize control
overhead.

Future plans involve the addition of one or two more stations to the net-
work. To accommodate these new stations and the increasing traffic
among existing stations, the SIMPS and PsP terminals will be modified to
allow 128-kbit/s operation. This will be done by utilizing two ScPC
channels and channeling traffic to either . (Bursts would be sent on fre-
quency f or f, or both, with two receivers monitoring both channels.)
This approach will allow increased capacity, with minimum impact on the
frequency planning in the SPADE transponder and on individual hardware
modules.

Also in the future, procedures will be developed to allow routine use of
the T&M parameters that are available on each packet. Experience has
shown that the SATNET channel is highly reliable except for rare events in
which power-level misadjustments or frequency drifts cause large
missed-packet rates. Use of the T&M parameters to warn of the onset of
these events is very valuable in the operational system [13].
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Abstract

The despin maneuver ofa Satellite Business Systems (sus) spacecraft is unique
because the effective spin-to-transverse inertia ratio is greater than unity in the
all-spinning configuration and less than unity in the despun configuration. Thus,
the vehicle changes from a passively stable to a passively unstable configuration.
For a brief period during this transition, the effective spin inertia ratio is
intermediate and the nutation angle diverges exponentially. A successful despin
maneuver depends on certain spacecraft mass properties. Digital simulations
have been used to determine the sufficient constraints on spacecraft mass proper-
ties for acceptable despin operations. The performance and characteristics of plat-
form despin can also be investigated based on the simulation results. Several runs
using the expected worst-case mass properties of the sus F-3 spacecraft were also
conducted. The results can be used to predict the spacecraft despin maneuver.

Introduction

During the despin operation of an SBS spacecraft, the spin-to-transverse
inertia ratio changes from an all-spun value greater than unity (-1.1) to a
despun value less than unity (-0.82). This number is defined as the ratio
of the spin-axis moment of inertia and the vehicle transverse moment of
inertia. Before the despin operation, the platform spin-axis inertia is in-
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eluded in the ratio; afterwards, only the rotor inertia is included. Hence,
the vehicle changes from a passively stable to a passively unstable
configuration as described in Reference 1.

For a short period, the effective spin inertia is intermediate and the
nutation angle diverges exponentially. Successful platform despin
depends on the amount of rotor transverse inertia asymmetry, dynamic
imbalance of both the rotor and the platform, and the torquing capability
of the despin motor(s). References 2 through 4 discuss the dynamics of
dual-spin spacecraft with this type of asymmetry and dynamic im-
balances. Constraints on mass properties for successful despin have been
established by the spacecraft manufacturer, Hughes Aircraft Corpora-
tion, primarily by digital simulation. Independent simulation runs have
been performed at COMSAT Laboratories to investigate the characteristics
of the despin operation for SBS spacecraft.

This paper reports on these digital simulation results, including those
of four runs using the expected worst-case mass properties of the SBS F-3
spacecraft. The results can be used to predict the spacecraft despin
maneuver.

System characteristics

The spacecraft rotor and platform are locked together throughout the
transfer orbit and apogee kick motor firing. In drift orbit, after the correc-
tion of apogee injection errors, the platform launch locks are released with
pyrotechnic bolt cutters in preparation for initial platform despin. The
despin operation produces a transition of spin-to-transverse inertia ratio a
from an all-spun value greater than unity (-1.1) to a despun value less
than unity (-0.82). Hence, the vehicle changes from a passively stable to a
passively unstable configuration. During the transition period, vehicle
transverse rates diverge exponentially. If the transition is not rapid
enough, the platform cannot be despun successfully.

While the platform spins about the intermediate axis, the nutation
angle diverges. The degree of divergence depends on the initial rate at
entry into the intermediate axis spin phase, the divergence rate, and the
dwell time in this state. These divergency factors are functions of rotor
transverse inertia asymmetry and dynamic imbalances for both the rotor
and platform. Constraints on mass properties for successful despin can be
established by digital simulations.

Figure 1 defines the coordinate axes to which the following parameters
apply:
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M" in,, = rotor and platform mass
(x„ x2, x3)' = position coordinates ofplatform CM (center of mass) with

1i 3 -
respect to vehicle CM
moment of rotor inertia about the 3-axis with respect to
the rotor CM

12, = transverse moments of rotor inertia with respect to the
rotor CM

123 = dynamic imbalance products of rotor inertia with respect
to the rotor CM

133 = moment of platform inertia about the 3-axis with respect
to the platform CM

1i o 122 = transverse moments ofplatform inertia with respect to the
platform CM

Pj3, 123 = dynamic imbalance products of platform inertia with
respect to the platform CM

113 = P13 + my +
m
^)x3x3,

12 = /D + mp (l + m̂

m
x2x3,

(YI, Y2, Y3 ) T = position coordinate of the rotor CM with respect to the
vehicle CM.

PLATFORM

ROTOR

Ix x x 1 ® PLATFORM
3 CM

I b- 2
VEHICLE
CM

yly2y3i ® ROTOR

Figure 1. Spacecraft Coordinate Axes

The sign convention for the product of inertia is defined as follows:

H = riiIH _'i'12

Letc.
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112 - f xy dm, etc.

A linear accelerometer in the rotor measures the notation angle. Its
sensitive axis, parallel to the 3-axis, has position coordinates (al, a2, a3)'

with respect to the vehicle CM.
The rate servo which controls platform despin is characterized by the

block diagram in Figure 2. One or two motors can be used in the despin
maneuver. Table 1 lists the assumed parameter values, except for pertur-
bations to rotor asymmetry and dynamic imbalances for the rotor and

platform.
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Figure 2. Simplified Block Diagram of Despin Rate Control System

Numerous parametric simulations have been conducted at COMSAT to
determine sufficient constraints on mass properties, thus assuring an
acceptable despin operation. Figure 3 shows some of the simulation
results. The next section briefly describes the dual-spin simulation

program used by COMSAT.

Digital simulation program

A computer program, HDCPG 1, was used to perform the digital simu-
lations of SBS spacecraft despin operation. This program simulates the full
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TABLE 1. ASSUMED PARAMETER VALUES IN METRIC UNITS

PA RAM E I I R

VALUE FOR VALUE IOR

INVESTIGATION RUNS PREDICrlON RUNS UNIT

388.09 401.23 kg
in„ 175.08 175.08 kg

XI, X2 0.00 0.00 In
x2 0.47 0.47 m
1h 204.2 213.41 kg-m2

112, 1121 + U2'2 - 1'121) lit + (R2 - 1121) kg-m2
Pit 284.69 294.98 kg-m2
112 0.00 0.68 kg-m2
31'12 98.37 100.68 kg-m2
132 74.8 77.24 kg-m2
TGI 99.19 99.73 kg-m2
11'2 0.68 -0.41 kg-m2

YI,Y2 0.00 0.00 in
-0.21 -0.203 in

al -0.43 -0.43 In
US 0.85 0.85 no
a3 -0.196 -0.196 In

KI* 1.15 1.15 Nm/A
1.15 1.15 V/rad/s

R* 16.20 16.20 ohm
l;,*,t 1.599 1.599 NPR
Tr*,f 0.149 0.312 Nm

* Motor parameters.
t Motor stall torque.
t Coulomb friction torque.

nonlinear dynamics for a rigid dual-spin spacecraft composed of two main
bodies, connected by a bearing assembly and containing several damping
mechanisms. Each main body has an arbitrary inertia tensor and arbitrary
body rates.

The complete source program consists of 21 original and 9 modified
IBM FORTRAN programs. It also uses subroutines from the IBM Scientific
Subroutine Package, FORTRAN functions, and CALCOMP plot programs.
The load module accommodates approximately 130 Kbytes, which,
together with plottape output buffers and other dynamic storage require-
ments, result in a required partition size of about 140-145 Kbytes.
Reference 5 provides a detailed discussion, and Reference 6 describes the
deviation of dynamic equations for the simulation programs.
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Figure 3. Despin Simulation Results

Simulation results and discussions

B 10 12

The HDCPG I program simulates the 3-axis nonlinear dynamics of a
rigid dual spinner. The rotor asymmetry and dynamic imbalances of the
rotor and the platform can be specified through input data. It has been
assumed that both the rotor and platform are statically balanced. The
BAPTA torque motor, which has a maximum torque of 1.599 Nm, is
modeled in Figure 2. The emf and Coulomb friction are included in the
model, but viscous friction and friction due to BAPTA bending moment
are not.

Thirty-six parametric simulations were performed. Some of these
results were recorded in Figure 3. All runs used only one motor, assuming
a failure of the redundant motor. Active Nutation Controllers (ANCs)
were not used for each despin operation because with certain mass
properties, both ANCs can be ineffective in controlling nutation during the
intermediate axis spin phase. For all successful despin simulations, the
resulting constant nutation angle can be nulled by turning on an ANC at
the proper time. In the successful despin operations, the nutation angle
stabilizes to a constant value; it does not decrease, because the nutation

damping was not simulated . Four cases have been identified for detailed
investigation and are defined in Table 2, accompanied by COMSAT's
simulation results.

TABLE 2. INVESTIGATION RUNS*

RUN No. oP W,ot tie - tit 13111' 3 COMSAT

No. MOTORS (rpm) (kg-m2) (kg-m2) (kg-m2) RESULTS#

1 1 67 2.71 0.271 0.068 S

2 2 89 2.71 0.271 0.068 S
3 I 73 11.518 0.136 -0.136 U

4 1 73 10.84 0 . 136 -0.068 U

Pz = [23 = 0 in all cases , and initial platform rate = initial rotor rate.
t W,,, = spin rate of rotor when platform is finally despun (assuming that the

maneuver is successful).

f S means a successful despin, and U an unsuccessful despin.

Table 3 defines the plotted variables for the investigation runs. Run 1
corresponds to platform despin with a failed redundant motor. Figures 4a
through 4d describe the events in the despin run. At t = 10 seconds,
the despin started; full despin motor torque was applied (first curve,
Figure 4d); and small transverse rates exist due to the total dynamic im-

TABLE 3. PLOTTED VARIABLES FOR THE INVESTIGATION RUNS

VARIABLE UNIT DESCRIPTION

WPI rad/s Platform inertial rates in a

WP2 rad/s platform basis

WP3 rpm

Nutation Angle r0,) deg Angle between 3-axis and total

angular momentum vector

WS rpm Rotor inertial rate about 3-axis

WR rpm Rate of rotor relative to platform

T3 N-m Net 3-axis torque on platform

due to motor(s) and friction
(see Figure 2)

ACC g Envelope of the accelerometer
output

Sigmal (01) Effective spin-to-transverse

Sigma2 (a2) inertia ratios-

.1 1 = (133 + 1gsw1/ w,)/max /T ; a3 = (ti) + /33wr,/w,)/min IT
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balance of the all-spun vehicle. Effective inertia ratios n, and o,,
accompanied by the nutation angle, are plotted in Figure 4b, which also
shows the unitinertia ratio line. During the intermediate axis spin phase,
the nutation angle diverged and reached approximately 3°. Platform
inertia rates along the transverse axes are shown in Figure 4c. These rates
diverged during the intermediate spin phase and stabilized after the
inertia ratio, oz, across the unit line. During the despin maneuver, the
rotor inertia rate about the 3-axis and the rate of rotor relative to the plat-
form, increased monotonically and converged to the same value. This
despin phenomenon is recorded in Figure 4a.

Run 2 simulated platform despin from a high all-spun spin rate. This
upper limit resulted in failure of the spin-down radial thruster. Two
motors were used, and results are shown in Figures 5a through 5d. At
initiation, full motor torques were commanded; and at the end, a steady-
state nutation angle of 1.3° was observed.

Simulation run 3 assumed large rotor asymmetry and was unsuccessful
in platform despin. Interesting variables are plotted in Figures 6a and 6b.
Starting from the intermediate axis spin phase, all variables changed
drastically and the platform could not be despun successfully. The param-
eters for this run are located in the lower right of Figure 3. According to
Hughes, this run was a successful despin. Since the boundaries in Figure
3 are vaguely defined, it is not surprising that the results are inconsistent.

Run 4 was unsuccessful. Because of the excessive asymmetry, the rotor
spin-up stalled during the intermediate axis spin phase. Figures 7a and 7b
reveal that this stall occurred at about 100 seconds. Between the stall and
140 seconds, the spin motor transferred momentum to coning with a
rapid buildup to about 45°, and a strong dynamic torque despun the rotor
by about 20 rpm. Violent dynamics were observed during the 140- to 200-
second period, and simulation results could be subject to modeling
errors.

Four additional runs, Al, A2, A3, and A4, predict the despin maneuver
of the sus F-3 spacecraft. The parameters used in the simulations are the
expected worst-case mass properties of the F-3 spacecraft listed in Table
1. The rotor asymmetry and spacecraft dynamic imbalances are specified
in Table 4.

Run Al used the expected worst-case mass properties of the sus F-3
spacecraft. Initially, the spacecraft had an all-spun rate of38 rpm. At t=10
seconds, the despin started by using only one motor. Figures 8a through
8d give the results of the despin operation. The despin maneuver was
finished in 390 seconds, and the final nutation angle was about 2.8°.
Figure 8c shows the spacecraft transverse angular rates, and Figure 8d
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RUN No. OF W. '22 - tlI /c3

No. MOTORS ( rpm) (kg-m2 ) (kg-m2)

Al 1 51 -2.71 0.271

A2 I 51 -5.42 0.136

A3 2 51 -2.71 0.271

A4 0 t -5.42 0.271

* %23 = i3 = 0 in all runs.
t WP3(0 ) = 18 rpm; WS (0) = 44.9 rpm.

t13
(kg-m2) RAIONALF

-0.068 Expected
worst case

-0.203 Margin of
Al and A3

-0.068 Two motor
despin

-0.203 Friction
spin-up

records the platform despin control torque and the envelope of the accel-
erometer output. Run A3 is shown in Figures 9a and 9b with the platform
despin using two motors. The operation required less than 3 minutes and
the steady-state notation angle was approximately 1.5°.

501

nMr SEC

Figure 9. Despin Simulation Run A3
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Run A2 used larger rotor asymmetry and dynamic imbalance. The plat-
form was successfully despun, and the final nutation angle was quite
large, as expected. Figures 10a and 10b provide the results of this run.
Run A4 was a simulation of friction spin-up. initial angular rates for the
platform and the rotor were selected to highlight the intermediate inertia
axis spin and to preserve the spacecraft initial angular momentum. From t
= 75 to 386 seconds, the spacecraft was spinning along the intermediate
inertia axis, and the vehicle transverse rates diverged. Finally, the
nutation angle settled down to around 16° and the spacecraft spun along
its major axis. Figures 1 la through lid report the results of run A4.
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Figure 10. Despin Simulation Run A2
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Digital computer simulations have been performed at COMSAT Labs to
investigate the characteristics of the despin operation for SBS spacecraft.
Numerous parametric simulations have been conducted to determine
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constraints on spacecraft mass properties for acceptable despin
operations. Several cases have been identified for detailed investigation
on the characteristics of platform despin operations. The results of these
simulations have been described. Four additional simulations using the
expected worst-case mass properties of the SBS F-3 spacecraft were also
included. The results can predict the despin maneuver of the F-3 space-

craft.

Acknowledgment

The author would like to thank Mr. A. Ramos for supplying the model of
the despin control loop and far many helpful discussions and suggestions;
Mr. T Paterson for comments on the HDC programs; and Dr. G. D. Gordon

for reviewing the original manuscript.

References

[11 P. W. Likins, "Attitude Stability Criteria for Dual-Spin Spacecraft," Journal

of Spacecraft and Rockets, Vol. 4, No. 12, December 1967, pp. 1632-1643.

[21 M. P. Scher and R. L. Farrenkopf, "Dynamic Trap States of Dual-Spin Space-
craft," AIAA Guidance and Control Conference, Key Biscayne, Florida,

August 20-22, 1973, AIAA paper 73-908.

[3] G. J. Adams, "Dual-Spin Spacecraft Dynamics Under Conditions of a Ro-
tating Unbalanced Platform and Rotor Asymmetry," International Astro-
nautical Federation Conference, Anaheim, California, October 1976.

[4] G. J. Adams, "Dual-Spin Spacecraft Dynamics During Platform Spinup,"

Journal of Guidance and Control, Vol. 3, No. I, January-February 1980, pp.

29-36.

[5] E. F. Lyon, R. Kramer, and G. Blustein, "Report to COMSAT on the Program
Set `HDCPGI' for the Simulation of the Dynamic Equations of Motion of a
Many-Body Spacecraft," HD&C, Inc. TR-70-2, March 1970.

[6] E. F. Lyon and R. Kramer, "Deviation of Equations of Motion ofa Many-Body
Spacecraft," HD&C, Inc. TR-70-4, May 1970.

DIGITAL SIMULATIONS OF SOS SPACECRAFT DESPIN OPERATION

John C. Hsing received a B.S. E. E from National Tai-
wan University in /967, and an M.S. and a Ph.D. in
electrical engineering lran the University of Mas-
sachusetts in 1970 and 1974. His research was in the
field of Adaptive Control Systems. In 1974, he joined
COMSAT Laboratories, and is currently a Member of
the Technical Staff in Inc Stabilization, Telemetry, and
Command Department of the Spacecraft Laboratory.
He has worked on the preliminary design of attitude
control systems for communications satellites, and is
currently involved in studies of advanced stabilization

229

and large spacecraft control. Since 1980, he has been teaching control systems
courses at The George Washington University. He is a member ofIEEE, AIAA, Sigma
Xi, and Eta Kappa Na.



Translations of Abstracts in this issue

Statistiques d'af'aiblissement par In precipitations des

sign.aux de balise des satellites COMSTAR it 19/29 Gus

et mesures radiometriques a 12 GUz

PRABHA N. KUMAR

Sommaire

La litterature scientifique actuelle comporte pen de mesures de propagation a
long terme aux frequences superieures a 10 GHz, et cette lacune est particuliere-
ment marquee en cc qui concerne la paire de bander 19/29 GHz L'article porte
sur des etudes des effets de la pluie sur les signaux de balise des satellites
COMSTAR a 19 eta 29 GHz, et sur la temperature de bruitatmospherique mesuree
au radiometre dans la bande des 12 GHz. On y presente des donnees recueillies
sur one periode de quatre annees de mesures ininterrompues, lesquelles compor-
talent des mesures de signaux de balise emanant de trots satellites COMSTAR
(COMSTARD-1, O-2 et o-3), la temperature de bruit atmospherique mesuree an ra-
diometre a 11,6 GHz, et ]'indite pluviometrique en on point de la surface. L'ana-
lyse de ces donnees comporte des distributions d'affaiblissement cumule a 19,04
et 28,56 GHz; des distributions d'affaiblissement diurnes et des histogrammes de
duree d'affaiblissement a 19,04 et 28,56 GHz ; des distributions cumulees de Pin-
dice pluviometrique mesure en on point de la surface; I'affaiblissement excessif
du a la pluie obtenu de la temperature de bruit atmospherique mesuree an radio-
metre ; et des histogrammes diurnes et de duree dans le cas de ces affaiblisse-
ments a 11,6 GHz. L'article s'attarde brievement sur la question de l'affaiblisse-
ment en fonction de I'angle de site.

Centre de commutation de bord pour les telecommunications
en AMRT-CS

F. ASSAL, R. GUPTA, J. APPLE ET A. LoPATIN

Sommaire

Cet article forte sur la conception et la mise an point d'un centre de commuta-
tion de bord8 X 8 (ssc) pourl'exploitation en mode d'accesmultiple parreparti-
tion dans le temps avec commutation de bord (AMRT-CS) a 6 GHz (trajet montant)
et/ou 4 GHz (traj et descendant). L'organe ssc se compose d'une matrice legere de
commutation hyperfrequence (MSM) crossbar a large bande et d'un organe d'ai-

guillage (OCU). Grace aux diviseurs/combineurs de puissance Wilkinson a large
bande et aux commutateurs a diodes PIN a resistance equilibree eta faible con-
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